As it becomes essential to understand which EF measures are more advantageous to inform assessment practices, this study sought to characterize the EF profile of children with ADHD by comparing ‘cool’ (short-term and working memory, cognitive flexibility, verbal fluency, and planning) and ‘hot’ (delay aversion) aspects of EF through two types of measures: performance-based neuropsychological measures and behavioral ratings. Specifically, we intended to further the literature by assessing which measures are better predictors of group membership and evaluating the degree to which participants are correctly assigned to the group based on the identified predictors. Thus, our aim is to answer the following research questions:
(1) In which dimensions of EF do children with ADHD differ from children with typical development? (i.e., discriminant procedure);
(2) How can EF measures be combined to reliably separate groups? (i.e., classification procedure);
(3) Based on the classification procedure, what proportion of children was correctly identified and classified in their group? (i.e., the suitability of the classification procedure).
4. DiscussionThe purpose of this study was two-fold: (1) to examine ‘cool’ and ‘hot’ aspects of executive functioning that can lead to a better diagnostic prediction and (2) to evaluate whether participants were adequately assigned to the Attention Deficit/Hyperactivity Disorder (ADHD) group based on the predictors identified. For that purpose, seventeen children with ADHD were matched to 17 typically developing (TD) peers by age, gender, and non-verbal intelligence. Performance-based measures (viz., digit span, tower, trails, and delay of gratification task) and behavioral ratings (viz., BRIEF) were used to assess short-term and working memory, planning, attention, cognitive flexibility, delay aversion, and executive function (EF) related behaviors in everyday life, respectively. Three questions were formulated to fulfill the overall purpose of this study; these will be discussed in the following paragraphs.
4.1. In What Dimensions Do Children with ADHD Differ from Children with Typical Development?Significant differences between the ADHD and TD groups were found in the linear combination of EF measures. Specifically, the groups differed in measures of short-term and working memory, planning, delay aversion, and EF-associated behaviors according to parents and teachers.
The present study confirmed the findings of previous research on working memory impairments in ADHD. In fact, over the years, several studies have shown that working memory performance is impaired in children with ADHD, although different measures have been used to assess this ability. For instance, in their metanalytic review, Martinussen et al. [71] found that children with ADHD showed moderately impaired verbal working memory compared to TD peers. Similar results have been found in the studies of Holmes et al. [14] and Skogli et al. [15], which illustrate a growing consensus suggesting that ADHD represents a group of subjects with working memory impairments.Our results are also in line with previous research as differences in planning abilities in children with ADHD have been frequently reported (e.g., [17,18,39]). For example, Willcutt et al. [18] pinpointed, in their meta-analysis, that 59% of the included studies reported difficulties in measures of planning. However, several studies conveyed contradicting findings (e.g., [19,20,21,22,23]). For example, studies by Skogli et al. [15], Bünger et al. [24], and Boyer et al. [25] found no difficulties in their samples of children and adolescents with ADHD when assessing planning abilities. These inconsistent results may entail artifacts of the discrepancy of tasks employed and of the variability in the scores used within each task to characterize planning competencies. For example, Boyer et al. [25], Holmes et al. [14], and Skogli et al. [15] applied the same task—the Tower Test of the Delis-Kaplan Executive Function System—and although all used the ‘total achievement score’ as a measure of planning ability, rule violations [14] and the move accuracy ratio [25] were also considered.Furthermore, our findings replicate and extend previous studies suggesting that children with ADHD are characterized as having a delay-averse motivational style (e.g., [58,59,60]) and that delay aversion may be useful in predicting and diagnosing the disorder. In fact, the preference for immediate outcomes in children with ADHD is one of the most consistent findings in motivational research [51,61]. For example, Solanto et al. [58] applied the Choice Delay Task to children with ADHD aged 7 to 9 years. In this task, the children are required to play a game to earn points that could be exchanged for a nickel. This study demonstrated that children with ADHD exhibit a clear preference for immediate rewards of lower value to the detriment of larger delayed rewards. Coghill et al. [59] found similar results in a sample of clinic-referred medication-naïve (i.e., unmedicated) 6- to 12-year-olds resorting to this same task, with a large effect size (0.82). However, others have found no evidence that delay aversion is a domain of differentiation between children with and without an ADHD diagnosis (e.g., [15,72,73]). For example, Skogli and colleagues [15] evaluated delay of gratification by resorting to the Hungry Donkey Task [74]. In this task, participants help a donkey collect as many apples as possible by selecting four possible doors (A, B, C, and D). When comparing their sample of ADHD (–combined and –inattentive presentation) with a typically developing control group, the authors found that all groups made slightly more advantageous choices (doors C and D) than disadvantageous ones (doors A and B). Furthermore, the authors found interesting results when comparing age groups, since older age was associated with better performance on this task. These contradictory results may be justifiable by age differences. Previous research with typically developing children (aged 6–12 years) has highlighted differences between younger and older age groups, in different variations of the Iowa Gambling Task, with younger children selecting disadvantageous choices more often than older subjects [75]. Additionally, it may be hypothesized that tasks that do not reinforce or penalize the child directly (i.e., gains and penalties within the game do not translate into ‘real’ prizes or losses for the child; for example, the Hungry Donkey Task and some variations of the Iowa Gambling Task as applied to children), do not ‘activate’ motivational processes as strongly as when the child has something to gain or lose directly, possibly giving rise to some of these discrepant results.Our study did not find significant differences between groups in measures of selective and sustained attention and processing speed resorting to completion time on Trails: Part A. In fact, unimpaired selective attention competencies have been previously reported. Heaton et al. [76] evaluated several subcomponents of attention (i.e., sustained, selective, and attentional control) in 63 children with ADHD, resorting to the Test of Everyday Attention for Children, and found no differences between groups on subtests of selective attention, suggesting that children with this diagnosis have difficulties sustaining and controlling attention. In the study by Mason et al. [77] slower reaction times were found in children with ADHD, but these were not significant relative to nonclinical controls, leading the authors to conclude that children with ADHD have unimpaired mechanisms of visual search. Interestingly, the authors found that the groups differed in the number of errors committed while performing the task. These findings are, partially, in line with those reported in the present study, as differences were not found when assessing selective attention considering completion time on the Trails: Part A. Despite these findings, differences are frequently found in selective attention measures (e.g., [78,79,80]. For example, Kiliç et al. [80] reported that children with ADHD demonstrate impaired performance on the cancellation test, which also evaluates sustained and selective attention. Assef et al. [78] described that children with ADHD exhibit higher reaction times that, in turn, pinpoint selective attention deficits. As stated above, there is a considerable amount of variation in the tasks chosen to assess selective, sustained attention, and processing speed. Not only that, but discrepant scores are utilized between studies (i.e., use of reaction time vs. use of accuracy of response scores), making it difficult to compare results and draw more homogeneous conclusions.Although difficulties with cognitive flexibility have been previously described (e.g., [14,19,21,26]), we were unable to corroborate these findings considering completion time on the Trails: Part B. Although we are not the first ones to report unimpaired cognitive flexibility competencies in children with ADHD (e.g., [24]), we must consider that our relatively small sample size could have prevented us from finding differences between groups. However, and as previously stated, the different tasks or scores within tasks utilized to characterize this domain could influence the results. For example, Holmes et al. [14] described difficulties with cognitive flexibility on the Trail Making Test, as the ADHD group committed significantly more errors than the control group in the completion of the three conditions. However, the differences in completion time were not significant, which is consistent with the findings derived from the current study. Consequently, it is possible that the number of errors committed during the task is significantly more representative of the child’s cognitive flexibility capacity than the completion times. Furthermore, it has been proposed that the difference between completion times in Trails: Part B and Trails: Part A might be a purer measure of cognitive flexibility [81]. However, in our sample, this particular outcome did not comply with the testing assumptions and, thus, had to be removed from the analysis. Future studies should explore these outcomes and hypothesis.In the current study, the Global Executive Composite from the Parent and Teacher Forms of the BRIEF was found to differentiate children with and without ADHD. This finding is in line with the conclusions arising from previous research. Several studies to date have reported elevated scores on almost all BRIEF subscales in children with ADHD (e.g., [15,17,42,44]). Although individual subscales were not analyzed in the present study, the current literature reveals that there is a convergence of results for inhibition, working memory, planning/organization (e.g., [17,25,40,42]), and the three main indexes (i.e., Behavioral Regulation Index, Metacognition Index, and General Executive Composite; e.g., [40,42,44]). Both parent and teacher forms of the scale appear to provide relevant information on EF deficits in children with ADHD (e.g., [17,42]).Overall, there is a high level of heterogeneity in the results of studies evaluating EF in children with ADHD. This incongruity may derive from important methodological constraints such as (a) sample characteristics (e.g., sample size, gender variability, comorbidity patterns), (b) different sampling selection processes (e.g., inclusion and exclusion criteria, diagnostic criteria and formulation), and (c) discrepancy of the assessment materials and analyzed scores (e.g., evaluation of cognitive flexibility resorting to Trail Making Test vs. Wisconsin Card Sorting Task; consideration of completion times vs. accuracy of response). Future studies should try to address these limitations.
4.2. How Can the EF Measures Be Combined to Reliably Separate Groups? Based on the Classification Procedure, What Proportion of Children Was Correctly Identified and Classified in Their Group?In our study, only three of the seven EF measures were considered good predictors of group membership: the BRIEF General Executive Composite—Teacher form, the Delay of Gratification Task, and the BRIEF General Executive Composite—Parent form. The discriminant function analysis (DFA) revealed that these predictors correctly identified and classified 97.1% of the children. Cross-validation revealed a prediction accuracy of 94.1%. These results go beyond previous reports that have evaluated the potential of EF measures to predict group membership in ADHD. For instance, Tan et al. [40] found that none of the performance-based measures employed (viz., WISC-IV: Digit Span Backward, Letter-number Sequencing, Symbol Search, Coding, Working Memory Index, Processing Speed Index, and Continuous Performance Test) predicted group membership above chance levels, even though differences between groups were found on the Conners Continuous Performance Test (CPT) variability score. Additionally, within the BRIEF subscales and indexes, working memory, inhibition, organization of materials, the metacognition index, and the global executive composite accurately predicted group membership by correctly classifying 76.2% of the participants. Results detailed by Toplak et al. [17] also reiterate the importance of behavioral measures as they found that, when performance and behavioral measures were entered together in a logistic regression, only the BRIEF subscales were significant predictors of group membership. Furthermore, according to this study, working memory (96%) and planning (91.9%) were identified as the most accurate predictors [17]. However, it is important to note that acceptable classification levels were obtained by Holmes et al. [14] resorting only to performance-based measures. In fact, the corresponding function derived from the discriminant analysis correctly classified 88.3% of children with ADHD and 81.6% of the control sample.The discrepancies described above may be related to the sample sizes (e.g., [14]: nADHD = 80; [40]: nADHD = 42), as larger samples are associated with more robust findings and smaller samples are linked to low power to detect differences between groups. In addition, it may be that more comprehensive assessments (i.e., multiple measures to assess a specific function) are necessary to detect differences between groups, and therefore for the accuracy of predictions to become significant. However, our results corroborate the importance of including observational measures of EF in the evaluation of children with ADHD, as the BRIEF—General Executive Composite was found to be a significant predictor of group membership.Regarding delay aversion, the dual-pathway model postulated by Sonuga-Barke [82] states that EF impairments are more prominent in daily life when affective and motivational processes interact with more ‘pure’ cognitive processes. As such, it is possible that the heterogeneity of the results reported in the literature on performance-based measures arises from their failure to capture important motivational and affective aspects associated with executive functioning in daily life [28]. In the present study, delay aversion was found to be one of the most significant predictors of ADHD, highlighting that children with this clinical disorder tend to prefer smaller rewards obtained immediately over larger rewards obtained after a significant delay in time. Consequently, it may be important to consider this dimension in clinical practice. 4.3. Limitations and Directions for Future StudiesThere are some limitations to the current study: (1) the small sample size included may lead to low power to detect more robust differences between groups, therefore preventing the identification of important predictors that contribute to diagnostic accuracy; (2) the version of the BRIEF questionnaire used is a translation not yet validated to the Portuguese population; and (3) due to institutional constraints, it was not possible to assess the presence of ADHD symptoms in the control group. Consequently, these constraints limit the generalization of the current findings and, thus, should be carefully considered before being referred for diagnostic confirmation. Future studies should include larger sample sizes to: (a) produce more accurate and robust results; (b) enable the inclusion of other important predictors (e.g., inhibitory control) and/or analyze multiple possible scores achieved within a task to understand which can better contribute to our understanding of ADHD; and (c) analyze the contribution of the BRIEF subscales individually. Additionally, it may be of interest to compare specific BRIEF subscales with performance-based measures that analogously assess the same domains and analyze and compare their accuracy in predicting group membership. Due to the small sample size of our study, the number of predictors entered in the analyzes needed to be reduced. Furthermore, forthcoming studies should place a higher emphasis on ‘hot’ EF and their relationship with cognitive processes.
However, the present study comprises some important strengths: (a) inclusion of a homogeneous sample of children with ADHD (i.e., without comorbid diagnoses); (b) children were matched by age, gender, and non-verbal intelligence; (c) EF questionnaires related to both parent and teacher points of view were analyzed; and (d) inclusion of a measure of ‘hot’ EF, which is frequently lacking in studies assessing EF in children with this diagnosis.
4.4. Implications for Clinical PracticeAlthough several questions remain related to the utility of performance-based measures in the diagnosis of ADHD, its potential to identify difficulties within executive functioning to inform intervention practices is undeniable. Their value in intervention planning is two-fold.
(1)As suggested by Toplak et al. [38], considering the structured environment in which assessments are usually carried out, performance-based measures could provide information regarding the optimal performance of the child within an organized and controlled environment. This can possibly lead to the establishment of individual recommendations on strategies and accommodations that can be employed daily, both at school and at home, to provide more structure and therefore facilitate the completion of tasks and reinforce or extinguish specific behaviors.(2)If, even in highly structured settings, the child reveals difficulties in executive functioning, the neuropsychological evaluation resorting to performance-based measures will yield information regarding their EF profile and can guide the formulation of an intervention plan that is adapted to the child’s own characteristics and targets specific domains of impairment.
In the current literature, several authors (e.g., [28,45]) posit that the ability of behavioral measures to detect EF difficulties supersedes performance-based measures as they present high levels of ecological validity (i.e., ability of a measure to reflect or predict behavior in everyday life; [83]), producing a more valid representation of the child’s EF competencies in daily life. According to our findings, and findings of previous studies (e.g., [17,40]), these measures are highly predictive of a diagnosis of ADHD and can, therefore, be considered a staple in neuropsychological assessment. However, these questionnaires are not exempt from limitations, as they depend on the subjective opinions of parents and teachers [83]. As, often, children with ADHD present difficulties monitoring and controlling their behavior, high levels of parental and teacher stress (e.g., [84,85]) could hinder their objectiveness. Additionally, as demands and expectations differ between settings and informants, points of view of parents and teachers are usually discrepant and, as such, results should always be carefully inspected.In summary, evidence retrieved from the use of performance and behavioral measures showcase distinctive levels of executive functioning. Consequently, the clinician should not expect convergence of results between these measures and ought to see them, instead, as cumulative evidence on the presence or absence of EF deficits.
Lastly, considering the potential for delay aversion to differentiate children with and without ADHD symptomatology, it is important to emphasize the importance of measures of ‘hot’ executive functioning in the intervention planning process. These could be laboratory measures, such as the Delay of Gratification Task, or information on the child’s motivational and affective competencies collected in a semi-structured interview with parents or caregivers.
Furthermore, ‘hot’ EF have important implications for children’s cognitive processes. For instance, children are presumably more attentive in class if they are motivated to learn and/or enjoy the subject being taught. Contrarily, if the child feels anxious about her school performance and/or perceives the lecture as too difficult considering her perception of her cognitive abilities, her performance will likely be impacted. Thus, considering and understanding the child’s level of reward sensitivity in intervention planning might constitute an important strategy for behavioral modification and symptomatology improvement.
Comments (0)