Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling

Pathakumari, B., Liang, G. & Liu, W. Immune defence to invasive fungal infections: a comprehensive review. Biomed. Pharmacother. 130, 110550 (2020).

CAS  PubMed  Article  Google Scholar 

Fierer, J. Invasive endemic fungi of the Western Hemisphere. Virulence 10, 832–834 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Akhtar, S., Aggarwal, N., Demkowicz, R., Andreatos, N. & Gupta, M. Cryptococcus and HIV. QJM 113, 347–348 (2020).

CAS  PubMed  Article  Google Scholar 

Zhao, Y. & Lin, X. Cryptococcus neoformans: sex, morphogenesis, and virulence. Infect. Genet Evol. 89, 104731 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mayer, F. L. & Kronstad, J. W. Cryptococcus neoformans. Trends Microbiol. 28, 163–164 (2020).

CAS  PubMed  Article  Google Scholar 

Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. N. Am. 30, 179–206 (2016).

Article  Google Scholar 

Henao-Martinez, A. F. & Beckham, J. D. Cryptococcosis in solid organ transplant recipients. Curr. Opin. Infect. Dis. 28, 300–307 (2015).

PubMed  Article  Google Scholar 

Saha, D. C. et al. Serologic evidence for reactivation of cryptococcosis in solid-organ transplant recipients. Clin. Vaccin. Immunol. 14, 1550–1554 (2007).

CAS  Article  Google Scholar 

Bryan, A. M. et al. FTY720 reactivates cryptococcal granulomas in mice through S1P receptor 3 on macrophages. J. Clin. Investig. 130, 4546–4560 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Grebenciucova, E., Reder, A. T. & Bernard, J. T. Immunologic mechanisms of fingolimod and the role of immunosenescence in the risk of cryptococcal infection: a case report and review of literature. Mult. Scler. Relat. Disord. 9, 158–162 (2016).

PubMed  Article  Google Scholar 

Ward, M. D., Jones, D. E. & Goldman, M. D. Cryptococcal meningitis after fingolimod discontinuation in a patient with multiple sclerosis. Mult. Scler. Relat. Disord. 9, 47–49 (2016).

PubMed  Article  Google Scholar 

Del Poeta, M. et al. Cryptococcal meningitis reported with Fingolimod treatment: case series. Neurol. Neuroimmunol. Neuroinflammation. 9, e1156 (2022).

Article  Google Scholar 

Cogliati, M. Global warming impact on the expansion of fundamental niche of Cryptococcus gattii VGI in Europe. Environ. Microbiol Rep. 13, 375–383 (2021).

PubMed  PubMed Central  Article  Google Scholar 

de S Araujo, G. R., Souza, W. & Frases, S. The hidden pathogenic potential of environmental fungi. Future Microbiol. 12, 1533–1540 (2017).

Article  Google Scholar 

Raffa, R. B., Eltoukhy, N. S. & Raffa, K. F. Implications of climate change (global warming) for the healthcare system. J. Clin. Pharm. Ther. 37, 502–504 (2012).

CAS  PubMed  Article  Google Scholar 

van Rhijn, N. & Bromley, M. The consequences of our changing environment on life threatening and debilitating fungal diseases in humans. J. Fungi 7, 1–18 (2021).

Google Scholar 

Brunet, K., Alanio, A., Lortholary, O. & Rammaert, B. Reactivation of dormant/latent fungal infection. J. Infect. 77, 463–468 (2018).

PubMed  Article  Google Scholar 

Shibuya, K. et al. Granuloma and cryptococcosis. J. Infect. Chemother. 11, 115–122 (2005).

PubMed  Article  Google Scholar 

Zhao, Y., Lin, J., Fan, Y. & Lin, X. Life cycle of Cryptococcus neoformans. Annu. Rev. Microbiol. 73, 17–42 (2019).

CAS  PubMed  Article  Google Scholar 

Diaz, J. H. The disease ecology, epidemiology, clinical manifestations, and management of emerging Cryptococcus gattii complex infections. Wilderness Environ. Med. 31, 101–109 (2020).

PubMed  Article  Google Scholar 

Chang, C. C. & Chen, S. C. Colliding epidemics and the rise of Cryptococcosis. J. Fungi 2, 1–11 (2015).

Article  Google Scholar 

Montoya, M. C., Magwene, P. M., Perfect, J. R. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. J. Fungi 7, 1–29 (2021).

Google Scholar 

Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Bicanic, T. et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob. Agents Chemother. 59, 7224–7231 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McEvoy, K., Normile, T. G. & Poeta, M. D. Antifungal drug development: targeting the fungal sphingolipid pathway. J. Fungi 6, jof6030142 (2020).

Article  Google Scholar 

Nami, S. et al. Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomed. Pharmacother. 109, 333–344 (2019).

CAS  PubMed  Article  Google Scholar 

Mourad, A. & Perfect, J. R. Present and future therapy of cryptococcus infections. J. Fungi 4, 75–85 (2018).

Article  Google Scholar 

Ueno, K., Yanagihara, N., Shimizu, K. & Miyazaki, Y. Vaccines and protective immune memory against Cryptococcosis. Biol. Pharm. Bull. 43, 230–239 (2020).

CAS  PubMed  Article  Google Scholar 

Caballero Van Dyke, M. C. & Wormley, F. L. Jr. A call to arms: quest for a cryptococcal vaccine. Trends Microbiol. 26, 436–446 (2018).

CAS  PubMed  Article  Google Scholar 

Gushiken, A. C., Saharia, K. K. & Baddley, J. W. Cryptococcosis. Infect. Dis. Clin. N. Am. 35, 493–514 (2021).

Article  Google Scholar 

Normile, T. G., Bryan, A. M., Del & Poeta, M. Animal models of Cryptococcus neoformans in Identifying immune parameters associated with primary infection and reactivation of latent infection. Front Immunol. 11, 1–21 (2020).

Article  Google Scholar 

Rella, A. et al. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front. Microbiol. 6, 836 (2015).

PubMed  PubMed Central  Article  Google Scholar 

Bouic, P. et al. Beta-sitosterol and beta-sitosterolglucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination. Int J. Immunopharmac. 18, 693–700 (1996).

CAS  Article  Google Scholar 

Grille, S., Zaslawski, A., Thiele, S., Plat, J. & Warnecke, D. The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals. Prog. Lipid Res. 49, 262–288 (2010).

CAS  PubMed  Article  Google Scholar 

Normile, T. G., McEvoy, K. & Del Poeta, M. Steryl glycosides in fungal pathogenesis: an understudied immunomodulatory adjuvant. J. Fungi 6, 1–16 (2020).

Article  Google Scholar 

Colombo, A. C. et al. Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model. mBio 10, e02909–02918 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pereira de Sa, N. et al. Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents. Nat. Commun. 12, 5885 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee, J. H. et al. Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25, 3834–3840 (2007).

CAS  PubMed  Article  Google Scholar 

Kasirzadeh, S. et al. beta-Sitosterol alters the inflammatory response in CLP rat model of sepsis by modulation of NFkappaB signaling. Biomed. Res. Int. 2021, 1–11 (2021).

Article  Google Scholar 

Donald, P. et al. A randomised placebo-controlled trial of the efficacy of beta-sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis. Int. J. Tuberculosis Lung Dis. 1, 518–522 (1997).

CAS  Google Scholar 

Normile, T. G., Rella, A. & Del Poeta, M. Cryptococcus neoformans Delta-sgl1 vaccination requires either CD4+ or CD8+ T cells for complete host protection. Front. Cell. Infect. Microbiol. 11, 1–11 (2021).

Article  Google Scholar 

Normile, T. G., Del Poeta, M. Three models of vaccination strategies against Cryptococcosis in immunocompromised hosts using heat-killed Cryptococcus neoformans Δsgl1. Front. Immunol. 13, 868523 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fenoglio, D. et al. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113, 6611–6618 (2009).

CAS  PubMed  Article  Google Scholar 

Comments (0)

No login
gif