Pathakumari, B., Liang, G. & Liu, W. Immune defence to invasive fungal infections: a comprehensive review. Biomed. Pharmacother. 130, 110550 (2020).
CAS PubMed Article Google Scholar
Fierer, J. Invasive endemic fungi of the Western Hemisphere. Virulence 10, 832–834 (2019).
PubMed PubMed Central Article Google Scholar
Akhtar, S., Aggarwal, N., Demkowicz, R., Andreatos, N. & Gupta, M. Cryptococcus and HIV. QJM 113, 347–348 (2020).
CAS PubMed Article Google Scholar
Zhao, Y. & Lin, X. Cryptococcus neoformans: sex, morphogenesis, and virulence. Infect. Genet Evol. 89, 104731 (2021).
CAS PubMed PubMed Central Article Google Scholar
Mayer, F. L. & Kronstad, J. W. Cryptococcus neoformans. Trends Microbiol. 28, 163–164 (2020).
CAS PubMed Article Google Scholar
Maziarz, E. K. & Perfect, J. R. Cryptococcosis. Infect. Dis. Clin. N. Am. 30, 179–206 (2016).
Henao-Martinez, A. F. & Beckham, J. D. Cryptococcosis in solid organ transplant recipients. Curr. Opin. Infect. Dis. 28, 300–307 (2015).
Saha, D. C. et al. Serologic evidence for reactivation of cryptococcosis in solid-organ transplant recipients. Clin. Vaccin. Immunol. 14, 1550–1554 (2007).
Bryan, A. M. et al. FTY720 reactivates cryptococcal granulomas in mice through S1P receptor 3 on macrophages. J. Clin. Investig. 130, 4546–4560 (2020).
CAS PubMed PubMed Central Article Google Scholar
Grebenciucova, E., Reder, A. T. & Bernard, J. T. Immunologic mechanisms of fingolimod and the role of immunosenescence in the risk of cryptococcal infection: a case report and review of literature. Mult. Scler. Relat. Disord. 9, 158–162 (2016).
Ward, M. D., Jones, D. E. & Goldman, M. D. Cryptococcal meningitis after fingolimod discontinuation in a patient with multiple sclerosis. Mult. Scler. Relat. Disord. 9, 47–49 (2016).
Del Poeta, M. et al. Cryptococcal meningitis reported with Fingolimod treatment: case series. Neurol. Neuroimmunol. Neuroinflammation. 9, e1156 (2022).
Cogliati, M. Global warming impact on the expansion of fundamental niche of Cryptococcus gattii VGI in Europe. Environ. Microbiol Rep. 13, 375–383 (2021).
PubMed PubMed Central Article Google Scholar
de S Araujo, G. R., Souza, W. & Frases, S. The hidden pathogenic potential of environmental fungi. Future Microbiol. 12, 1533–1540 (2017).
Raffa, R. B., Eltoukhy, N. S. & Raffa, K. F. Implications of climate change (global warming) for the healthcare system. J. Clin. Pharm. Ther. 37, 502–504 (2012).
CAS PubMed Article Google Scholar
van Rhijn, N. & Bromley, M. The consequences of our changing environment on life threatening and debilitating fungal diseases in humans. J. Fungi 7, 1–18 (2021).
Brunet, K., Alanio, A., Lortholary, O. & Rammaert, B. Reactivation of dormant/latent fungal infection. J. Infect. 77, 463–468 (2018).
Shibuya, K. et al. Granuloma and cryptococcosis. J. Infect. Chemother. 11, 115–122 (2005).
Zhao, Y., Lin, J., Fan, Y. & Lin, X. Life cycle of Cryptococcus neoformans. Annu. Rev. Microbiol. 73, 17–42 (2019).
CAS PubMed Article Google Scholar
Diaz, J. H. The disease ecology, epidemiology, clinical manifestations, and management of emerging Cryptococcus gattii complex infections. Wilderness Environ. Med. 31, 101–109 (2020).
Chang, C. C. & Chen, S. C. Colliding epidemics and the rise of Cryptococcosis. J. Fungi 2, 1–11 (2015).
Montoya, M. C., Magwene, P. M., Perfect, J. R. Associations between Cryptococcus genotypes, phenotypes, and clinical parameters of human disease: a review. J. Fungi 7, 1–29 (2021).
Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).
PubMed PubMed Central Article Google Scholar
Bicanic, T. et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob. Agents Chemother. 59, 7224–7231 (2015).
CAS PubMed PubMed Central Article Google Scholar
McEvoy, K., Normile, T. G. & Poeta, M. D. Antifungal drug development: targeting the fungal sphingolipid pathway. J. Fungi 6, jof6030142 (2020).
Nami, S. et al. Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomed. Pharmacother. 109, 333–344 (2019).
CAS PubMed Article Google Scholar
Mourad, A. & Perfect, J. R. Present and future therapy of cryptococcus infections. J. Fungi 4, 75–85 (2018).
Ueno, K., Yanagihara, N., Shimizu, K. & Miyazaki, Y. Vaccines and protective immune memory against Cryptococcosis. Biol. Pharm. Bull. 43, 230–239 (2020).
CAS PubMed Article Google Scholar
Caballero Van Dyke, M. C. & Wormley, F. L. Jr. A call to arms: quest for a cryptococcal vaccine. Trends Microbiol. 26, 436–446 (2018).
CAS PubMed Article Google Scholar
Gushiken, A. C., Saharia, K. K. & Baddley, J. W. Cryptococcosis. Infect. Dis. Clin. N. Am. 35, 493–514 (2021).
Normile, T. G., Bryan, A. M., Del & Poeta, M. Animal models of Cryptococcus neoformans in Identifying immune parameters associated with primary infection and reactivation of latent infection. Front Immunol. 11, 1–21 (2020).
Rella, A. et al. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front. Microbiol. 6, 836 (2015).
PubMed PubMed Central Article Google Scholar
Bouic, P. et al. Beta-sitosterol and beta-sitosterolglucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination. Int J. Immunopharmac. 18, 693–700 (1996).
Grille, S., Zaslawski, A., Thiele, S., Plat, J. & Warnecke, D. The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals. Prog. Lipid Res. 49, 262–288 (2010).
CAS PubMed Article Google Scholar
Normile, T. G., McEvoy, K. & Del Poeta, M. Steryl glycosides in fungal pathogenesis: an understudied immunomodulatory adjuvant. J. Fungi 6, 1–16 (2020).
Colombo, A. C. et al. Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model. mBio 10, e02909–02918 (2019).
CAS PubMed PubMed Central Article Google Scholar
Pereira de Sa, N. et al. Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents. Nat. Commun. 12, 5885 (2021).
CAS PubMed PubMed Central Article Google Scholar
Lee, J. H. et al. Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25, 3834–3840 (2007).
CAS PubMed Article Google Scholar
Kasirzadeh, S. et al. beta-Sitosterol alters the inflammatory response in CLP rat model of sepsis by modulation of NFkappaB signaling. Biomed. Res. Int. 2021, 1–11 (2021).
Donald, P. et al. A randomised placebo-controlled trial of the efficacy of beta-sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis. Int. J. Tuberculosis Lung Dis. 1, 518–522 (1997).
Normile, T. G., Rella, A. & Del Poeta, M. Cryptococcus neoformans Delta-sgl1 vaccination requires either CD4+ or CD8+ T cells for complete host protection. Front. Cell. Infect. Microbiol. 11, 1–11 (2021).
Normile, T. G., Del Poeta, M. Three models of vaccination strategies against Cryptococcosis in immunocompromised hosts using heat-killed Cryptococcus neoformans Δsgl1. Front. Immunol. 13, 868523 (2022).
CAS PubMed PubMed Central Article Google Scholar
Fenoglio, D. et al. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113, 6611–6618 (2009).
Comments (0)