Cardiac involvement in two rare neuromuscular diseases: LAMA2-related muscular dystrophy and SELENON-related myopathy

Villar-Quiles RN von der Hagen M Metay C Gonzalez V Donkervoort S Bertini E et al.

The clinical, histologic, and genotypic spectrum of SEPN1-related myopathy: A case series.

Neurology. 95: e1512-e1527https://doi.org/10.1212/WNL.0000000000010327Zambon AA Ridout D Main M Mein R Phadke R Muntoni F et al.

LAMA2-related muscular dystrophy: Natural history of a large pediatric cohort.

Ann Clin Transl Neurol. 7: 1870-1882https://doi.org/10.1002/acn3.51172Geranmayeh F Clement E Feng LH Sewry C Pagan J Mein R et al.

Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations.

Neuromuscul Disord. 20: 241-250https://doi.org/10.1016/j.nmd.2010.02.001Salvati A Bonaventura E Sesso G Pasquariello R Sicca F.

Epilepsy in LAMA2-related muscular dystrophy: A systematic review of the literature.

Seizure. 91: 425-436https://doi.org/10.1016/j.seizure.2021.07.020Ferreiro A Quijano-Roy S Pichereau C Moghadaszadeh B Goemans N Bönnemann C et al.

Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies.

Am J Hum Genet. 71: 739-749https://doi.org/10.1086/342719Clarke NF Kidson W Quijano-Roy S Estournet B Ferreiro A Guicheney P et al.

SEPN1: associated with congenital fiber-type disproportion and insulin resistance.

Ann Neurol. 59: 546-552https://doi.org/10.1002/ana.20761Ferreiro A Ceuterick-de Groote C Marks JJ Goemans N Schreiber G Hanefeld F et al.

Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene.

Ann Neurol. 55: 676-686https://doi.org/10.1002/ana.20077Ziyaee F Shorafa E Dastsooz H Habibzadeh P Nemati H Saeed A et al.

A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report.

BMC Med Genet. 20 ()https://doi.org/10.1186/s12881-018-0743-1Filipe A Chernorudskiy A Arbogast S Varone E Villar-Quiles RN Pozzer D et al.

Defective endoplasmic reticulum-mitochondria contacts and bioenergetics in SEPN1-related myopathy.

Cell Death Differ. 28: 123-138https://doi.org/10.1038/s41418-020-0587-zBarraza-Flores P Bates CR Oliveira-Santos A Burkin DJ.

Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics.

Front Mol Neurosci. 13: 1https://doi.org/10.3389/fnmol.2020.00001Wang CH Bonnemann CG Rutkowski A Sejersen T Bellini J Battista V et al.

Consensus statement on standard of care for congenital muscular dystrophies.

J Child Neurol. 25: 1559-1581https://doi.org/10.1177/0883073810381924Wang CH Dowling JJ North K Schroth MK Sejersen T Shapiro F et al.

Consensus statement on standard of care for congenital myopathies.

J Child Neurol. 27: 363-382https://doi.org/10.1177/0883073812436605

Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies.

Skelet Muscle. 1: 9https://doi.org/10.1186/2044-5040-1-9Gawlik KI Akerlund M Carmignac V Elamaa H Durbeej M.

Distinct roles for laminin globular domains in laminin alpha1 chain mediated rescue of murine laminin alpha2 chain deficiency.

PLoS One. 5: e11549https://doi.org/10.1371/journal.pone.0011549Sasaki T Giltay R Talts U Timpl R Talts JF.

Expression and distribution of laminin alpha1 and alpha2 chains in embryonic and adult mouse tissues: an immunochemical approach.

Exp Cell Res. 275: 185-199https://doi.org/10.1006/excr.2002.5499Taratuto AL Lubieniecki F Diaz D Schultz M Ruggieri V Saccoliti M et al.

Merosin-deficient congenital muscular dystrophy associated with abnormal cerebral cortical gyration: an autopsy study.

Neuromuscul Disord. 9: 86-94https://doi.org/10.1016/s0960-8966(98)00112-6Chernorudskiy A Varone E Colombo SF Fumagalli S Cagnotto A Cattaneo A et al.

Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity.

Proc Natl Acad Sci U S A. 117: 21288-21298https://doi.org/10.1073/pnas.2003847117Arbogast S Beuvin M Fraysse B Zhou H Muntoni F Ferreiro A.

Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment.

Ann Neurol. 65: 677-686https://doi.org/10.1002/ana.21644Sequeira V Nijenkamp LL Regan JA van der Velden J.

The physiological role of cardiac cytoskeleton and its alterations in heart failure.

Biochim Biophys Acta. 1838: 700-722https://doi.org/10.1016/j.bbamem.2013.07.011Kasaikina MV Hatfield DL Gladyshev VN.

Understanding selenoprotein function and regulation through the use of rodent models.

Biochim Biophys Acta. 1823: 1633-1642https://doi.org/10.1016/j.bbamcr.2012.02.018Tricco AC Lillie E Zarin W O'Brien KK Colquhoun H Levac D et al.

PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation.

Ann Intern Med. 169: 467-473https://doi.org/10.7326/M18-0850Beghetti M Gervaix A Haenggeli CA Berner M Rimensberger PC.

Myocarditis associated with parvovirus B19 infection in two siblings with merosin-deficient congenital muscular dystrophy.

Eur J Pediatr. 159: 135-136https://doi.org/10.1007/s004310050034Abdel Aleem A Elsaid MF Chalhoub N Chakroun A Mohamed KAS AlShami R et al.

Clinical and genomic characteristics of LAMA2 related congenital muscular dystrophy in a patients' cohort from Qatar. A population specific founder variant.

Neuromuscul Disord. 30: 457-471https://doi.org/10.1016/j.nmd.2020.03.009Carboni N Marrosu G Porcu M Mateddu A Solla E Cocco E et al.

Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-α2-chain gene: a chance association or a novel phenotype?.

Muscle Nerve. 44: 826-828https://doi.org/10.1002/mus.22228Chae JH Lee JS Hwang H Kim KJ Hwang YS Park JD et al.

Merosin-deficient congenital muscular dystrophy in Korea.

Brain and Development. 31: 341-346Gilhuis HJ ten Donkelaar HJ Tanke RB Vingerhoets DM Zwarts MJ Verrips A et al.

Nonmuscular involvement in merosin-negative congenital muscular dystrophy.

Pediatr Neurol. 26: 30-36https://doi.org/10.1016/s0887-8994(01)00352-6Harris E McEntagart M Topf A Lochmüller H Bushby K Sewry C et al.

Clinical and neuroimaging findings in two brothers with limb girdle muscular dystrophy due to LAMA2 mutations.

Neuromuscul Disord. 27: 170-174https://doi.org/10.1016/j.nmd.2016.10.009Hissong E Salvatore S Tanji K Lavi E.

Congenital muscular dystrophy, cardiomyopathy, and peripheral neuropathy due to merosin deficiency: Peripheral nerve histology of cauda equina.

Human Pathology: Case Reports. 4: 4-8Jimenez N Song K Lynn AM.

Hemodynamic instability during prone spine surgery in a patient with merosin-deficient congenital muscular dystrophy.

Paediatr Anaesth. 23: 294-296https://doi.org/10.1111/pan.12101Liang WC Tian X Yuo CY Chen WZ Kan TM Su YN et al.

Comprehensive target capture/next-generation sequencing as a second-tier diagnostic approach for congenital muscular dystrophy in Taiwan.

PLoS One. 12e0170517https://doi.org/10.1371/journal.pone.0170517Magri F Nigro V Angelini C Mongini T Mora M Moroni I et al.

The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis.

Muscle and Nerve. 55: 55-68Marques J Duarte ST Costa S Jacinto S Oliveira J Oliveira ME et al.

Atypical phenotype in two patients with LAMA2 mutations.

Neuromuscul Disord. 24: 419-424https://doi.org/10.1016/j.nmd.2014.01.004Nelson I Stojkovic T Allamand V Leturcq F Becane HM Babuty D et al.

Laminin alpha2 Deficiency-Related Muscular Dystrophy Mimicking Emery-Dreifuss and Collagen VI related Diseases.

Journal of Neuromuscular Diseases. 2: 229-240Spyrou N Philpot J Foale R Camici PG Muntoni F.

Evidence of left ventricular dysfunction in children with merosin-deficient congenital muscular dystrophy.

Am Heart J. 136: 474-476https://doi.org/10.1016/s0002-8703(98)70222-4Stojkovic T Nelson I Nectoux J Cossee M Allamand V Gartioux C et al.

Clinical heterogeneity of myopathy related to partial merosin deficiency.

Neuromuscular Disorders. 23: 746Liang Y Li G Chen S He R Zhou X Chen Y et al.

Muscle MRI findings in a one-year-old girl with merosin-deficient congenital muscular dystrophy type 1A due to LAMA2 mutation: A case report.

Biomed Rep. 7: 193-196https://doi.org/10.3892/br.2017.935Wu L Xiang B Zhang H He X Shih C Chen X et al.

Three novel recessive mutations in LAMA2, SYNE1, and TTN are identified in a single case with congenital muscular dystrophy.

Neuromuscul Disord. 27: 1018-1022https://doi.org/10.1016/j.nmd.2017.06.558Prelle A Comi GP Rigoletto C Turconi A Felisari G Ciscato P et al.

An atypical case of partial merosin deficiency congenital muscular dystrophy.

J Neurol. 244: 391-395https://doi.org/10.1007/s004150050110Sewry CA Naom I D'Alessandro M Ferlini A Philpot J Mercuri E et al.

The protein defect in congenital muscular dystrophy.

Biochem Soc Trans. 24: 281Shttps://doi.org/10.1042/bst024281s

Muntoni F, Philpot J, Spyrou N, Camici P, Dubowitz V, Cardiac involvement in merosin-negative congenital muscular dystrophy. 1995, Developmental medicine & child neurology

Poppe M Hermann R Lorenz N Weber A Kabus M Sorokin LM et al.

Dilatative cardiomyopathy in a case of merosin-deficient congenital muscular dystrophy.

Neuromuscular Disorders. 8 ()Ding J Zhao D Du R Zhang Y Yang H Liu J et al.

Clinical and molecular genetic analysis of a family with late-onset LAMA2-related muscular dystrophy.

Brain Dev. 38: 242-249https://doi.org/10.1016/j.braindev.2015.08.005Di Blasi C He Y Morandi L Cornelio F Guicheney P Mora M.

Mild muscular dystrophy due to a nonsense mutation in the LAMA2 gene resulting in exon skipping.

Brain. 124: 698-704https://doi.org/10.1093/brain/124.4.698

Congenital muscular dystrophies and congenital myopathies.

CONTINUUM Lifelong Learning in Neurology. 19: 1509-1534Jones KJ Morgan G Johnston H Tobias V Ouvrier RA Wilkinson I et al.

The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review.

J Med Genet. 38: 649-657https://doi.org/10.1136/jmg.38.10.649Kohler C Heyer C Thiels C Lucke T Weigt-Usinger K Dekomien G et al.

Muscular hypotonia, joint contractures and elevated creatin kinase level as main symptoms for Congenital muscular dystrophy 1A (MDC 1A/congenital muscular dystrophy with laminin alpha 2 (merosin) deficiency).

in: Neuropediatrics. Conference: 36th Annual Meeting of the Society of Neuropediatrics. Mannheim Germany. Conference Publication, : 41Mora M Moroni I Uziel G Di Blasi C Barresi R Farina L et al.

Mild clinical phenotype in a 12-year-old boy with partial merosin deficiency and central and peripheral nervous system abnormalities.

Neuromuscular Disorders. 6: 377-381https://doi.org/10.1016/0960-8966(96)00359-8Pini V Weisburd B Ganesh V Troia SD Catapano F Aguti S et al.

CONGENITAL MUSCULAR DYSTROPHIES: EP.70 Exploring the role of genetic modifiers in a mild <em>LAMA2</em>-RD case associated with a <em>LAMA2</em>loss-of-function mutation.

Neuromuscular Disorders. 31: S70https://doi.org/10.1016/j.nmd.2021.07.095Vill K Blaschek A Glaser D Kuhn M Haack T Alhaddad B et al.

Early-Onset Myopathies: Clinical Findings, Prevalence of Subgroups and Diagnostic Approach in a Single Neuromuscular Referral Center in Germany.

Journal of Neuromuscular Diseases. 4: 315-325Cho J Kim SH Kim KH Kim SW Shin HY.

Rimmed vacuoles in late-onset LAMA2-related limb girdle muscular dystrophy.

Acta Neurologica Belgica. 121: 1389-1391https://doi.org/10.1007/s13760-021-01631-3Schara U Kress W Bönnemann CG Breitbach-Faller N Korenke CG Schreiber G et al.

The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy.

European Journal of Paediatric Neurology. 12: 224-230https://doi.org/10.1016/j.ejpn.2007.08.011Scoto M Cirak S Mein R Feng L Manzur AY Robb S et al.

SEPN1-related myopathies: clinical course in a large cohort of patients.

Neurology. 76: 2073-2078https://doi.org/10.1212/WNL.0b013e31821f467c

Von der Hagen M, Kress W, Ferreiro A, Bönneman CG, Grieben U, Korenke CG, et al, Phenotype and long-term follow-up of juvenile Selenoprotein N1-related myopathy (SEPN1-RM). 2010, Neuropediatrics

Villafranco N Varghese NP.

Acute respiratory failure and pulmonary hypertension as first presentation of multiminicore disease in set of siblings.

American Journal of Respiratory and Critical Care Medicine. Conference. : 199Venance SL Koopman WJ Miskie BA Hegele RA Hahn AF.

Rigid spine muscular dystrophy due to SEPN1 mutation presenting as cor pulmonale.

Neurology. 64 (): 395-396https://doi.org/10.1212/01.Wnl.0000149755.85666Okamoto Y Takashima H Higuchi I Matsuyama W Suehara M Nishihira Y et al.

Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene.

Neurogenetics. 7: 175-183Potulska-Chromik A Jędrzejowska M Gos M Rosiak E Kierdaszuk B Maruszak A et al.

Pathogenic Mutations and Putative Phenotype-Affecting Variants in Polish Myofibrillar Myopathy Patients.

J Clin Med. 10https://doi.org/10.3390/jcm10050914Nicolau S Liewluck T Tracy JA Laughlin RS Milone M.

Congenital myopathies in the adult neuromuscular clinic.

Neurology Genetics. 5: e341https://doi.org/10.1212/NXG.0000000000000341Ardissone A Bragato C Blasevich F Maccagnano E Salerno F Gandioli C et al.

SEPN1-related myopathy in three patients: novel mutations and diagnostic clues.

Eur J Pediatr. 175: 1113-1118https://doi.org/10.1007/s00431-015-2685-3Saini AG Padmanabha H Kumar S Sankhyan N Singhi P.

SEPN1-related Rigid Spine Muscular Dystrophy.

The Indian Journal of Pediatrics. 85: 1033-1034https://doi.org/10.1007/s12098-018-2713-1Tajsharghi H Darin N Tulinius M Oldfors A.

Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1).

Neuromuscular Disorders. 15: 299-302https://doi.org/10.1016/j.nmd.2004.11.004Ozcan N Ozcanyuz DG Mert GG Besen S Herguner MO Incecik F et al.

SEPN1-related congenital myopathy: A case report.

Acta Myologica. 37: 164Izawa NI Ohsawa YO Kutoku YK Okamoto YO Takashima HT Sunada YS.

A novel homozygous mutation of the selenoprotein gene causes rigid spine syndrome with muscular dystrophy.

Neuromuscular Disorders. 20: 610-611Scoto M Cirak S Childs A Manzur A Quinlivian R Hanna M et al.

The selenoprotein N related congenital muscular dystrophy, the UK experience: Clinical course and genotype/phenotype correlation.

European Journal of Paediatric Neurology. 13: S18Finsterer J Ramaciotti C Wang CH Wahbi K Rosenthal D Duboc D et al.

Cardiac findings in congenital muscular dystrophies.

Pediatrics. 126: 538-545https://doi.org/10.1542/peds.2010-0208Nguyen Q Lim KRQ Yokota T.

Current understanding and treatment of cardiac and skeletal muscle pathology in laminin-α2 chain-deficient congenital muscular dystrophy.

Appl Clin Genet. 12: 113-130https://doi.org/10.2147/tacg.S187481Magri F Brusa R Bello L Peverelli L Del Bo R Govoni A et al.

Limb girdle muscular dystrophy due to.

Acta Myol. 39: 67-82https://doi.org/10.36185/2532-1900-009Guglieri M Magri F Comi GP.

Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities.

Clin Chim Acta. 361: 54-79https://doi.org/10.1016/j.cccn.2005.05.020Addinsall AB Wright CR Andrikopoulos S van der Poel C Stupka N.

Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease.

Biochem J. 475: 1037-1057https://doi.org/10.1042/bcj20170920

Core myopathies - a short review.

Acta Myol. 39: 266-273https://doi.org/10.36185/2532-1900-029

Congenital muscular dystrophies: What is new?.

Neuromuscul Disord. 31: 931-942https://doi.org/10.1016/j.nmd.2021.07.009Charron P Arbustini E Bonne G.

What Should the Cardiologist know about Lamin Disease?.

Arrhythm Electrophysiol Rev. 1: 22-28https://doi.org/10.15420/aer.2012.1.22Ishikawa K Mimuro M Tanaka T.

Ventricular arrhythmia in X-linked Emery-Dreifuss muscular dystrophy: a lesson from an autopsy case.

Intern Med. 50: 459-462https://doi.org/10.2169/internalmedicine.50.4598Oomen AWGJ Jones K Yeates L Semsarian C Ingles J Sy RW.

Rare desmin variant causing penetrant life-threatening arrhythmic cardiomyopathy.

HeartRhythm Case Rep. 4: 318-323https://doi.org/10.1016/j.hrcr.2018.04.007Hall CL Akhtar MM Sabater-Molina M Futema M Asimaki A Protonotarios A et al.

Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype.

International Journal of Cardiology. 307: 101-108https://doi.org/10.1016/j.ijcard.2019.09.048

Arrhythmias in the muscular dystrophies.

Card Electrophysiol Clin. 7: 303-308https://doi.org/10.1016/j.ccep.2015.03.011Akilzhanova A Guelly C Abilova Z Rakhimova S Akhmetova A Kairov U et al.Clinical Utility of Using Next Generation Sequencing in LifeThreatening Ventricular Arrhythmia. Casas G Oristrell G Borregan M Gutierrez L Teixido G Galian L et al.

Genotype-phenotype correlation in left ventricular non-compaction of the myocardium.

European Heart Journal.

Boo KY, Choi J-I, Kim YG, Oh S-K, Kim D-Y, Lee K-N, et al, Next-generation Sequencing Based Genetic Testing Can Detect Concealed Cardiomyopathies in Patients with Idiopathic Ventricular Fibrillation,

Caggiano S Khirani S Dabaj I Cavassa E Amaddeo A Arroyo JO et al.

Diaphragmatic dysfunction in SEPN1-related myopathy.

Neuromuscul Disord. 27: 747-755https://doi.org/10.1016/j.nmd.2017.04.010Bouman K Groothuis JT Doorduin J van Alfen N Udink Ten Cate FEA van den Heuvel FMA et al.

Natural history, outcome measures and trial readiness in LAMA2-related muscular dystrophy and SELENON-related myopathy in children and adults: protocol of the LAST STRONG study.

BMC Neurol. 21: 313https://doi.org/10.1186/s12883-021-02336-zGardner BI Bingham SE Allen MR Blatter DD Anderson JL.

Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings.

Cardiovasc Ultrasound. 7: 38https://doi.org/10.1186/1476-7120-7-38Karlsen S Dahlslett T Grenne B Sjøli B Smiseth O Edvardsen T et al.

Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training.

Cardiovasc Ultrasound. 17: 18https://doi.org/10.1186/s12947-019-0168-9

Comments (0)

No login
gif