Abatacept (Cytotoxic T Lymphocyte Antigen 4-Fragment Crystallizable) Reduces Allergic Inflammation of Ovalbumin-Sensitized Mice.

1. Hoyte, FCL, Nelson, HS. Recent advances in allergic rhinitis. F1000Res. 2018;7(3):F1000. doi: 10.12688/f1000research.15367.1.
Google Scholar2. Meltzer, EO . Allergic rhinitis: burden of illness, quality of life, comorbidities, and control. Immunol Allergy Clin. 2016;36(2):235–248.
Google Scholar | Crossref | Medline3. Aboshady, OA, Elghanam, KM. Sublingual immunotherapy in allergic rhinitis: efficacy, safety, adherence and guidelines. Clin Exp Otorhinolaryngol. 2014;7(4):241.
Google Scholar | Crossref4. Chang, H, Han, DH, Mo, J-h, et al. Early compliance and efficacy of sublingual immunotherapy in patients with allergic rhinitis for house dust mites. Clin Exp Otorhinolaryngol. 2009;2(3):136.
Google Scholar | Crossref | Medline5. Pawankar, RU, Okuda, M, Okubo, K, et al. Lymphocyte subsets of the nasal mucosa in perennial allergic rhinitis. Am J Respir Crit Care Med. 1995;152(6):2049–2058.
Google Scholar | Crossref6. Saito, H, Asakura, K, Ogasawara, H, et al. Topical antigen provocation increases the number of immunoreactive IL-4-, IL-5–and IL-6-positive cells in the nasal mucosa of patients with perennial allergic rhinitis. Int Arch Allergy Appl Immunol. 1997;114(1):81–85.
Google Scholar | Crossref7. Sim, TC, Grant, JA, Hilsmeier, KA, et al. Proinflammatory cytokines in nasal secretions of allergic subjects after antigen challenge. Am J Respir Crit Care Med. 1994;149(2):339–344.
Google Scholar | Crossref8. Sato, J, Asakura, K, Murakami, M, et al. Topical CTLA4–Ig suppresses ongoing mucosal immune response in presensitized murine model of allergic rhinitis. Int Arch Allergy Appl Immunol. 1999;119(3):197–204.
Google Scholar | Crossref9. Lenschow, DJ, Walunas, TL, Bluestone, JA. CD28/B7 System of T cell costimulation. Annu Rev Immunol. 1996;14(1):233–258.
Google Scholar | Crossref10. Schweitzer, AN, Sharpe, AH. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production. J Immunol. 1998;161(6):2762–2771.
Google Scholar11. Linsley, PS, Wallace, PM, Johnson, J, et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science. 1992;257(5071):792–795.
Google Scholar | Crossref12. Linsley, PS, Nadler, SG. The clinical utility of inhibiting CD28–mediated costimulation. Immunol Rev. 2009;229(1):307–321.
Google Scholar | Crossref13. Kliwinski, C, Kukral, D, Postelnek, J, et al. Prophylactic administration of abatacept prevents disease and bone destruction in a rat model of collagen-induced arthritis. J Autoimmun. 2005;25(3):165–171.
Google Scholar | Crossref14. Davidson, A, Aranow, C. Pathogenesis and treatment of systemic lupus erythematosus nephritis. Curr Opin Rheumatol. 2006;18(5):468–475.
Google Scholar15. Perrin, PJ, June, CH, Maldonado, JH, et al. Blockade of CD28 during in vitro activation of encephalitogenic T cells or after disease onset ameliorates experimental autoimmune encephalomyelitis. J Immunol. 1999;163(3):1704–1710.
Google Scholar16. Sato, J, Asakura, K, Murakami, M, et al. Suppressive effects of CTLA4-Ig on nasal allergic reactions in presensitized murine model. Life Sci. 1999;64(9):785–795.
Google Scholar | Crossref17. Boleto, G, Guignabert, C, Pezet, S, et al. T-cell costimulation blockade is effective in experimental digestive and lung tissue fibrosis. Arthritis Res Ther. 2018;20(1):1–12.
Google Scholar18. Bigbee, CL, Gonchoroff, DG, Vratsanos, G, et al. Abatacept Treatment does not exacerbate chronic Mycobacterium tuberculosis infection in mice. Arthritis Rheum. 2007;56(8):2557–2565.
Google Scholar | Crossref | Medline19. Ryu, G, Bae, J-S, Kim, JH, et al. Sneezing and rubbing counts in allergic rhinitis mouse models are a reliable indicator of type 2 immune response. Clin Exp Otorhinolaryngol. 2020;13(3):308.
Google Scholar | Crossref | Medline20. Deurloo, D, Van Berkel, M, Van Esch, B, et al. CD28/CTLA4 Double deficient mice demonstrate crucial role for B7 co–stimulation in the induction of allergic lower airways disease. Clin Exp Allergy. 2003;33(9):1297–1304.
Google Scholar | Crossref | Medline21. Chen, Z-R, Zhang, G-B, Wang, Y-Q, et al. Therapeutic effects of anti–B7-H3 antibody in an ovalbumin-induced mouse asthma model. Ann Allergy Asthma Immunol. 2013;111(4):276–281.
Google Scholar | Crossref22. Suh, W-K, Gajewska, BU, Okada, H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1–mediated immune responses. Nat Immunol. 2003;4(9):899–906.
Google Scholar | Crossref23. Prasad, DV, Nguyen, T, Li, Z, et al. Murine B7-H3 is a negative regulator of T cells. J Immunol. 2004;173(4):2500–2506.
Google Scholar | Crossref24. Leitner, J, Klauser, C, Pickl, WF, et al. B7–H3 is a potent inhibitor of human T–cell activation: no evidence for B7–H3 and TREML2 interaction. Eur J Immunol. 2009;39(7):1754–1764.
Google Scholar | Crossref25. Harris, N, Campbell, C, Le Gros, G, et al. Blockade of CD28/B7 co–stimulation by mCTLA4–Hγ1 inhibits antigen–induced lung eosinophilia but not Th2 cell development or recruitment in the lung. Eur J Immunol. 1997;27(1):155–161.
Google Scholar | Crossref26. Keane-Myers, A, Gause, WC, Linsley, PS, et al. B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigens. J Immunol. 1997;158(5):2042–2049.
Google Scholar27. Parulekar, AD, Boomer, JS, Patterson, BM, et al. A randomized controlled trial to evaluate inhibition of T-cell costimulation in allergen-induced airway inflammation. Am J Respir Crit Care Med. 2013;187(5):494–501.
Google Scholar | Crossref28. Abdelshaeed, R, Griffiths, GB, Neighbour, H, et al. Use of abatacept in eosinophilic asthma. J Allergy Clin Immunol Pract. 2014;2(2):220–221.
Google Scholar | Crossref29. Deppong, CM, Parulekar, A, Boomer, JS, et al. CTLA4–Ig Inhibits allergic airway inflammation by a novel CD28–independent, nitric oxide synthase–dependent mechanism. Eur J Immunol. 2010;40(7):1985–1994.
Google Scholar | Crossref

Comments (0)

No login
gif