1. Nariai, T, Matsushima, Y, Imae, S, et al. Severe haemodynamic stress in selected subtypes of patients with moyamoya disease: a positron emission tomography study. J Neurol Neurosurg Psychiatry 2005;76:663–669.
Google Scholar |
Crossref |
Medline |
ISI2. Williams, DS, Detre, JA, Leigh, JS, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89:212–216.
Google Scholar |
Crossref |
Medline |
ISI3. Bokkers, RP, Bremmer, JP, van Berckel, BN, et al. Arterial spin labeling perfusion MRI at multiple delay times: a correlative study with H(2)(15)O positron emission tomography in patients with symptomatic carotid artery occlusion. J Cereb Blood Flow Metab 2010;30:222–229.
Google Scholar |
SAGE Journals |
ISI4. Choi, HJ, Sohn, CH, You, SH, et al. Can arterial spin-labeling with multiple postlabeling delays predict cerebrovascular reserve? AJNR Am J Neuroradiol 2018;39:84–90.
Google Scholar |
Crossref |
Medline5. Fan, AP, Guo, J, Khalighi, MM, et al. Long-delay arterial spin labeling provides more accurate cerebral blood flow measurements in moyamoya patients: a simultaneous positron emission tomography/MRI study. Stroke 2017;48:2441–2449.
Google Scholar |
Crossref |
Medline6. Goetti, R, Warnock, G, Kuhn, FP, et al. Quantitative cerebral perfusion imaging in children and young adults with moyamoya disease: comparison of arterial spin-labeling-MRI and H(2)[(15)O]-PET. AJNR Am J Neuroradiol 2014;35:1022–1028.
Google Scholar |
Crossref |
Medline |
ISI7. Hara, S, Tanaka, Y, Ueda, Y, et al. Noninvasive evaluation of CBF and perfusion delay of moyamoya disease using arterial spin-labeling MRI with multiple postlabeling delays: comparison with (15)O-Gas PET and DSC-MRI. AJNR Am J Neuroradiol 2017;38:696–702.
Google Scholar |
Crossref |
Medline8. Nael, K, Meshksar, A, Liebeskind, DS, et al. Quantitative analysis of hypoperfusion in acute stroke: arterial spin labeling versus dynamic susceptibility contrast Stroke 2013;44:3090–3096.
Google Scholar |
Crossref |
Medline9. Noguchi, T, Kawashima, M, Irie, H, et al. Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 2011;80:e557–e562.
Google Scholar |
Crossref |
Medline |
ISI10. Tsujikawa, T, Kimura, H, Matsuda, T, et al. Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease. PLoS One 2016;11:e0156005.
Google Scholar |
Crossref |
Medline11. Wang, DJ, Alger, JR, Qiao, JX, et al. Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 2013;3:1–7.
Google Scholar |
Crossref |
Medline12. Wang, J, Alsop, DC, Song, HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003;50:599–607.
Google Scholar |
Crossref |
Medline |
ISI13. Powers, WJ . Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991;29:231–240.
Google Scholar |
Crossref |
Medline |
ISI14. Hirai, S, Inaji, M, Tanaka, Y, et al. Correlation between clinical presentations and hemodynamic parameters measured by dynamic susceptibility contrast magnetic resonance imaging in adult patients with moyamoya disease. J Stroke Cerebrovasc Dis 2017;26:2814–2820.
Google Scholar |
Crossref |
Medline15. Sasagawa, A, Mikami, T, Hirano, T, et al. Characteristics of cerebral hemodynamics assessed by CT perfusion in moyamoya disease. J Clin Neurosci 2018;47:183–189.
Google Scholar |
Crossref |
Medline16. Ya, J, Zhou, D, Ding, J, et al. High-resolution combined arterial spin labeling MR for identifying cerebral arterial stenosis induced by moyamoya disease or atherosclerosis. Ann Transl Med 2020;8:87.
Google Scholar |
Crossref |
Medline17. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of willis). Neurol Med Chir (Tokyo) 2012;52:245–266.
Google Scholar |
Crossref |
Medline18. Hara, S, Tanaka, Y, Ueda, Y, et al. Detection of hemodynamic impairment on 15O gas PET using visual assessment of arterial spin-labeling MR imaging in patients with moyamoya disease. J Clin Neurosci 2020;72:258–263.
Google Scholar19. Ye, FQ, Berman, KF, Ellmore, T, et al. H(2)(15)O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 2000;44:450–456.
Google Scholar |
Crossref |
Medline |
ISI20. Senda, M, Buxton, RB, Alpert, NM, et al. The 15O steady-state method: correction for variation in arterial concentration. J Cereb Blood Flow Metab 1988;8:681–690.
Google Scholar |
SAGE Journals |
ISI21. Sadato, N, Yonekura, Y, Senda, M, et al. PET and the autoradiographic method with continuous inhalation of oxygen-15-gas: theoretical analysis and comparison with conventional steady-state methods. J Nucl Med 1993;34:1672–1680.
Google Scholar |
Medline |
ISI22. Iida, H, Kanno, I, Miura, S, et al. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986;6:536–545.
Google Scholar |
SAGE Journals |
ISI23. Grubb, RL, Raichle, ME, Higgins, CS, et al. Measurement of regional cerebral blood volume by emission tomography. Ann Neurol 1978;4:322–328.
Google Scholar |
Crossref |
Medline |
ISI24. Mutsaerts, HJ, van Dalen, JW, Heijtel, DF, et al. Cerebral perfusion measurements in elderly with hypertension using arterial spin labeling. PLoS One 2015;10:e0133717.
Google Scholar |
Crossref |
Medline |
ISI25. Mazziotta, J, Toga, A, Evans, A, et al. A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;356:1293–1322.
Google Scholar |
Crossref |
Medline |
ISI26. Houkin, K, Nakayama, N, Kuroda, S, et al. Novel magnetic resonance angiography stage grading for moyamoya disease. Cerebrovasc Dis 2005;20:347–354.
Google Scholar |
Crossref |
Medline |
ISI27. Kimura, H, Kado, H, Koshimoto, Y, et al. Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 2005;22:189–198.
Google Scholar |
Crossref |
Medline |
ISI28. Chen, J, Licht, DJ, Smith, SE, et al. Arterial spin labeling perfusion MRI in pediatric arterial ischemic stroke: initial experiences. J Magn Reson Imaging 2009;29:282–290.
Google Scholar |
Crossref |
Medline |
ISI29. Zaharchuk, G, Bammer, R, Straka, M, et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology 2009;252:797–807.
Google Scholar |
Crossref |
Medline30. Clement, P, Mutsaerts, HJ, Vaclavu, L, et al. Variability of physiological brain perfusion in healthy subjects - A systematic review of modifiers. Considerations for multi-center ASL studies. J Cereb Blood Flow Metab 2018;38:1418–1437.
Google Scholar |
SAGE Journals |
ISI31. Fan, AP, Jahanian, H, Holdsworth, SJ, et al. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab 2016;36:842–861.
Google Scholar |
SAGE Journals |
ISI32. Alsop, DC, Detre, JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236–1249.
Google Scholar |
SAGE Journals |
ISI33. Parkes, LM, Tofts, PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002;48:27–41.
Google Scholar |
Crossref |
Medline |
ISI34. Heijtel, DF, Mutsaerts, HJ, Bakker, E, et al. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage 2014;92:182–192.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)