Guanidinoacetate–creatine in secondary progressive multiple sclerosis: a case report

1. Lorscheider, J, Buzzard, K, Jokubaitis, V, et al. Defining secondary progressive multiple sclerosis. Brain 2016; 139: 2395–2405. doi: 10.1093/brain/aww173.
Google Scholar | Crossref | Medline | ISI2. Obert, D, Helms, G, Sättler, MB, et al. Brain metabolite changes in patients with relapsing-remitting and secondary progressive multiple sclerosis: a two-year follow-up study. PLoS One 2016; 11: e0162583. doi: 10.1371/journal.pone.0162583.
Google Scholar | Crossref | Medline3. Vallée, A, Lecarpentier, Y, Guillevin, R, et al. Demyelination in multiple sclerosis: reprogramming energy metabolism and potential PPARγ agonist treatment approaches. Int J Mol Sci 2018; 19: 1212. doi: 10.3390/ijms19041212.
Google Scholar | Crossref | Medline4. Ostojic, SM. Creatine and multiple sclerosis. Nutr Neurosci 2020; 1–8. Online ahead of print. doi: 10.1080/1028415X.2020.1819108.
Google Scholar5. Ostojic, SM. Guanidinoacetic acid loading for improved location-specific brain creatine. Clin Nutr 2021; 40: 324–326. doi: 10.1016/j.clnu.2020.05.003.
Google Scholar | Crossref | Medline6. Semeredi, S, Stajer, V, Ostojic, J, et al. Guanidinoacetic acid with creatine compared with creatine alone for tissue creatine content, hyperhomocysteinemia, and exercise performance: a randomized, double-blind superiority trial. Nutrition 2019; 57: 162–166. doi: 10.1016/j.nut.2018.04.009.
Google Scholar | Crossref | Medline7. Ostojic, SM. Co-administration of creatine and guanidinoacetic acid for augmented tissue bioenergetics: A novel approach? Biomed Pharmacother 2017; 91: 238–240. doi: 10.1016/j.biopha.2017.04.075.
Google Scholar | Crossref | Medline8. Wilson, M, Reynolds, G, Kauppinen, RA, et al. A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med 2011; 65: 1–12. doi: 10.1002/mrm.22579.
Google Scholar | Crossref | Medline | ISI9. Hanefeld, F, Bauer, HJ, Christen, HJ, et al. Multiple sclerosis in childhood: report of 15 cases. Brain Dev 1991; 13: 410–416. doi:10.1016/s0387- 7604(12)80038-6.
Google Scholar | Crossref | Medline | ISI10. Azevedo, CJ, Kornak, J, Chu, P, et al. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann Neurol 2014; 76: 269–278. doi: 10.1002/ana.24202.
Google Scholar | Crossref | Medline11. Choi, IY, Lee, SP, Denney, DR, et al. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 2011; 17: 289–296. doi: 10.1177/1352458510384010.
Google Scholar | SAGE Journals | ISI12. Gagnier, JJ, Kienle, G, Altman, DG, et al. The CARE guidelines: consensus-based clinical case reporting guideline development. Headache 2013; 53: 1541–1547. doi: 10.1111/head.12246.
Google Scholar | Crossref | Medline13. He, J, Inglese, M, Li, BS, et al. Relapsing-remitting multiple sclerosis: metabolic abnormality in nonenhancing lesions and normal-appearing white matter at MR imaging: initial experience. Radiology 2005; 234: 211–217. doi: 10.1148/radiol.2341031895.
Google Scholar | Crossref | Medline14. Inglese, M, Liu, S, Babb, JS, et al. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 2004; 63: 170–172. doi: 10.1212/01.wnl.0000133133.77952.7c.
Google Scholar | Crossref | Medline | ISI15. Kreis, R. The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 2016; 75: 15–18. doi: 10.1002/mrm.25568.
Google Scholar | Crossref | Medline16. Ostojic, SM, Stojanovic, M, Drid, P, et al. Supplementation with guanidinoacetic acid in women with chronic fatigue syndrome. Nutrients 2016; 8: 72. doi: 10.3390/nu8020072.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif