Circ_0006220 promotes non-small cell lung cancer progression via sponging miR-203-3p and regulating RGS17 expression

1. Duma, N, Santana-Davila, R, Molina, JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clinic Proc 2019 Aug; 94(8): 1623–1640.
Google Scholar | Crossref | Medline2. Herbst, RS, Morgensztern, D, Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018; 553(7689): 446–454.
Google Scholar | Crossref | Medline3. Yao, JT, Zhao, SH, Liu, QP, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol - Res Pract 2017 May; 213(5): 453–456.
Google Scholar | Crossref | Medline4. Li, R, Jiang, J, Shi, H, et al. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci 2020 May; 77(9): 1661–1680.
Google Scholar | Crossref | Medline5. Jin, M, Shi, C, Yang, C, et al. Upregulated circRNA ARHGAP10 predicts an unfavorable prognosis in NSCLC through regulation of the miR-150-5p/GLUT-1 Axis. Mol Ther Nucleic Acids 2019; 18: 219–231.
Google Scholar | Crossref | Medline6. Qiu, BQ, Zhang, PF, Xiong, D, et al. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non‐small cell lung cancer by regulating Galectin‐1‐AKT/ERK1/2 signaling. J Cell Physiol 2019; 234(7): 11256–11264.
Google Scholar | Crossref | Medline7. Zhang, ZY, Gao, XH, Ma, MY, et al. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Sci Rep 2020 Jun 3; 10(1): 9024.
Google Scholar | Crossref | Medline8. Mishra, S, Yadav, T, Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 2016; 98: 12–23.
Google Scholar | Crossref | Medline | ISI9. Ganju, A, Khan, S, Hafeez, BB, et al. miRNA nanotherapeutics for cancer. Drug Discov Today 2017; 22(2): 424–432.
Google Scholar | Crossref | Medline10. Zhang, M, Shi, H, Zhang, C, et al. MiRNA-621 inhibits the malignant progression of non-small cell lung cancer via targeting SIX4. Eur Rev Med Pharmacol Sci 2019; 23(11): 4807–4814.
Google Scholar | Medline11. Chi, Y, Jin, Q, Liu, X, et al. miR‐203 inhibits cell proliferation, invasion, and migration of non‐small‐cell lung cancer by downregulating RGS 17. Cancer Sci 2017 Dec; 108(12): 2366–2372.
Google Scholar | Crossref | Medline12. Sanger, HL, Klotz, G, Riesner, D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 1976 Nov; 73(11): 3852–3856.
Google Scholar | Crossref | Medline13. Jeck, WR, Sorrentino, JA., Wang, K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141–157.
Google Scholar | Crossref | Medline14. Li, R, Jiang, J, Shi, H, et al. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci 2020 May; 77(9): 1661–1680.
Google Scholar | Crossref | Medline15. Qiu, BQ, Zhang, PF, Xiong, D, et al. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non‐small cell lung cancer by regulating Galectin‐1‐AKT/ERK1/2 signaling. J Cell Physiol 2019; 234(7): 11256–11264.
Google Scholar | Crossref | Medline16. Zhang, ZY, Gao, XH, Ma, MY, et al. CircRNA_101237 promotes NSCLC progression via the miRNA-490-3p/MAPK1 axis. Sci Rep 2020; 10(1): 9024.
Google Scholar | Crossref | Medline17. Li, J, Li, P, Zhang, G, et al. CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts. Cell Death Dis 2020; 11(7): 553.
Google Scholar | Crossref | Medline18. Fabian, MR, Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19(6): 586–593.
Google Scholar | Crossref | Medline19. Zhang, J, Li, D, Zhang, Y, et al. Integrative analysis of mRNA and miRNA expression profiles reveals seven potential diagnostic biomarkers for non-small cell lung cancer. Oncol Rep 2020; 43(1): 99–112.
Google Scholar | Medline20. Zhang, M, Shi, H, Zhang, C, et al. MiRNA-621 inhibits the malignant progression of non-small cell lung cancer via targeting SIX4. Eur Review Medical Pharmacological Sciences 2019 Jun; 23(11): 4807–4814.
Google Scholar | Medline21. Cheng, R, Lu, C, Zhang, G, et al. Overexpression of miR-203 increases the sensitivity of NSCLC A549/H460 cell lines to cisplatin by targeting Dickkopf-1. Oncol Rep 2017; 37(4): 2129–2136.
Google Scholar | Crossref | Medline22. Liang, J, Sun, T, Wang, G, et al. Clinical significance and functions of miR-203a-3p/AVL9 axis in human non-small-cell lung cancer. Per Med 2020; 17(4): 271–282.
Google Scholar | Crossref | Medline23. Mao, H, Zhao, Q, Daigle, M, et al. RGS17/RGSZ2, a novel regulator of Gi/o, Gz, and Gq signaling. J Biol Chem 2004; 279(25): 26314–26322.
Google Scholar | Crossref | Medline24. Nunn, C, Mao, H, Chidiac, P, et al. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling. Semin Cell Dev Biol 2006; 17(3): 390–399.
Google Scholar | Crossref | Medline25. Zhang, LS, Ma, HG, Sun, FH, et al. MiR-203 inhibits the malignant behavior of prostate cancer cells by targeting RGS17. Eur Rev Med Pharmacol Sci 2019; 23(13): 5667–5674.
Google Scholar | Medline26. James, MA, Lu, Y, Liu, Y, et al. RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 2009; 69(5): 2108–2116.
Google Scholar | Crossref | Medline27. Li, L, Luo, HS. G-protein signaling protein-17 (RGS17) is upregulated and promotes tumor growth and migration in human colorectal carcinoma. Oncol Res 2018; 26(1): 27–35.
Google Scholar | Crossref | Medline28. James, MA, Lu, Y, Liu, Y, et al. RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 2009; 69(5): 2108–2116.
Google Scholar | Crossref | Medline29. Bodle, CR, Mackie, DI, Roman, DL. RGS17: an emerging therapeutic target for lung and prostate cancers. Future Med Chem 2013; 5(9): 995–1007.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif