1. Meng, X, Zhou, J, Zhao, CN, et al. Health benefits and molecular mechanisms of resveratrol: a narrative review. Foods 2020; 9: 1–27. DOI:
10.3390/foods9030340.
Google Scholar |
Crossref2. Brenji, RH, Pezeshki, A, Ghanbarzadeh, B, et al. Resveratrol entrapped food grade lipid nanocarriers as a potential antioxidant in a mayonnaise. Food Biosci 2021; 41: 101041. DOI:
10.1016/j.fbio.2021.101041.
Google Scholar |
Crossref3. Sun, R, Zhao, G, Ni, S, et al. Lipid based nanocarriers with different lipid compositions for topical delivery of resveratrol: comparative analysis of characteristics and performance. J Drug Deliv Sci Technol 2014; 24: 591–600, DOI:
10.1016/S1773-2247(14)50124-4.
Google Scholar |
Crossref4. Wu, B, Gu, L, Wang, W, et al. Skin targeting of resveratrol-loaded starch-based pickering emulsions: preparation, characterization, and evaluation. Colloid Polym Sci 2021; 299: 1–13. DOI:
10.1007/s00396-021-04856-z.
Google Scholar |
Crossref5. Aa, A, Eg, B, Rfa, C, et al. The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Tec 2021; 62: 102360. DOI:
10.1016/j.jddst.2021.102360.
Google Scholar |
Crossref6. Massounga Bora, AF, Ma, S, Li, X, et al. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: review and recent advances. Food Res Int 2018; 105: 241–249. DOI:
10.1016/j.foodres.2017.11.047.
Google Scholar |
Crossref |
Medline7. Wong, TW, Harjoh, N, Nawaz, A, et al. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des 2015; 21: 2848–2866. DOI:
10.2174/1381612821666150428145216.
Google Scholar |
Crossref |
Medline8. Wang, Q, Hu, C, Zoghbi, A, et al. Oil-in-oil-in-water pre-double emulsions stabilized by nonionic surfactants and silica particles: a new approach for topical application of rutin. Colloids Surf A Physicochemical Eng Aspects 2017; 522: 399–407. DOI:
10.1016/j.colsurfa.2017.02.067.
Google Scholar |
Crossref9. Szulc-Musio, B, Sarecka-Hujar, B. The use of micro- and nanocarriers for resveratrol delivery into and across the skin in different skin diseases—a literature review. Pharmaceutics 2021; 13: 451.
Google Scholar |
Crossref |
Medline10. Tenchov, R, Bird, R, Curtze, AE, et al. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. Acs Nano 2021; 15: 16982–17015. DOI:
10.1021/acsnano.1c04996.
Google Scholar |
Crossref11. Ashkar, A, Sosnik, A, Davidovich-Pinhas, M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54: 107789. DOI:
10.1016/j.biotechadv.2021.107789.
Google Scholar |
Crossref |
Medline12. Katouzian, I, Faridi Esfanjani, A, Jafari, SM, et al. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci Tech 2017; 68: 14–25. DOI:
10.1016/j.tifs.2017.07.017.
Google Scholar |
Crossref13. Ganesan, P, Narayanasamy, D. Lipid nanoparticles: different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 2017; 6: 37–56. DOI:
10.1016/j.scp.2017.07.002.
Google Scholar |
Crossref14. Teixeira, MC, Carbone, C, Souto, EB. Beyond liposomes: recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68: 1–11. DOI:
10.1016/j.plipres.2017.07.001.
Google Scholar |
Crossref |
Medline15. Tamjidi, F, Shahedi, M, Varshosaz, J, et al. Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg 2013; 19: 29–43. DOI:
10.1016/j.ifset.2013.03.002.
Google Scholar |
Crossref16. Severino, P, Santana, M, Souto, EB. Optimizing SLN and NLC by 22 full factorial design: effect of homogenization technique. Mater Sci Eng C Mater Biol Appl 2012; 32: 1375–1379. DOI:
10.1016/j.msec.2012.04.017.
Google Scholar |
Crossref |
Medline17. Müller, R, Petersen, R, Hommoss, A, et al. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliver Rev 2007; 59: 522–530. DOI:
10.1016/j.addr.2007.04.012.
Google Scholar |
Crossref |
Medline |
ISI18. Karimi, N, Ghanbarzadeh, B, Hamishehkar, H, et al. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC). J Colloid Interf Sci 2018; 22: 18–24. DOI:
10.1016/j.colcom.2017.11.006.
Google Scholar |
Crossref19. Yang, Y, Corona, A, Schubert, B, et al. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J Colloid Interf Sci 2014; 418: 261–272. DOI:
10.1016/j.jcis.2013.12.024.
Google Scholar |
Crossref |
Medline20. Wang, T, Ma, X., Lei, Y, et al. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces 2016; 148: 1–11. DOI:
10.1002/elsc.200700066.
Google Scholar |
Crossref |
Medline21. Torres-Giner, S, Nbsp, M, Ocio, J, et al. Development of active antimicrobial fiber-based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 2010; 8: 303–314. DOI:
10.1016/j.colsurfb.2016.08.047.
Google Scholar |
Crossref22. Contri, RV, Soares, RMD, Pohlmann, AR, et al. Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Mater Sci Eng C Mater Biol Appl 2014; 42: 234–242. DOI:
10.1016/j.msec.2014.05.001.
Google Scholar |
Crossref |
Medline23. Almeida, IF, Fernandes, AR, Fernandes, L, et al. Moisturizing effect of oleogel/hydrogel mixtures. Pharm Dev Technol 2008; 13: 487–494. DOI:
10.1080/10837450802282447.
Google Scholar |
Crossref |
Medline24. Zhu, T, Mao, J, Cheng, Y, et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 2019; 6: 1900761. DOI:
10.1002/admi.201900761.
Google Scholar |
Crossref25. Ashafaq, M, Intakhab Alam, M, Khan, A, et al. Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats. Int Immunopharmacol 2021; 94: 107494. DOI:
10.1016/j.intimp.2021.107494.
Google Scholar |
Crossref |
Medline26. Yuan, D, Jacquier, JC, O'Riordan, ED. Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: a new approach to achieve both high entrapment efficiency and controlled in vitro release. Food Chem 2018; 239: 1200–1209. DOI:
10.1016/j.foodchem.2017.07.021.
Google Scholar |
Crossref |
Medline27. Liu, S, Horak, J, Höldrich, M, et al. Accurate and reliable quantification of the protein surface coverage on protein-functionalized nanoparticles. Anal Chim Acta 2017; 989: 29–37.
Google Scholar |
Crossref |
Medline28. Chu, CC, Hasan, Z, Chua, SK, et al. Formulation and characterization of novel nanostructured lipid carriers with photoprotective properties made from carnauba wax, beeswax, pumpkin seed oil, and UV filters. J Am Oil Chemists’ Soc 2020; 97: 531–542. DOI:
10.1002/aocs.12340.
Google Scholar |
Crossref29. Pimentel-Moral, S, Teixeira, MC, Fernandes, AR, et al. Polyphenols-enriched hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): optimization by multi-response surface methodology - sciencedirect. J Drug Deliv Sci Tec 2019; 49: 660–667. DOI:
10.1016/j.jddst.2018.12.023.
Google Scholar |
Crossref30. Huang, J, Wang, Q, Chu, L, et al. Liposome-chitosan hydrogel bead delivery system for the encapsulation of linseed oil and quercetin: preparation and in vitro characterization studies. LWT - Food Sci Technol 2019; 117: 108615, DOI:
10.1016/j.lwt.2019.108615.
Google Scholar |
Crossref31. Sun, R, Xia, Q. Nanostructured lipid carriers incorporated in alginate hydrogel: enhanced stability and modified behavior in gastrointestinal tract. Colloids Surf A Physicochemical Eng Aspects 2019; 574: 197–206. DOI:
10.1016/j.colsurfa.2019.04.082.
Google Scholar |
Crossref32. Liu, Y, Fan, Y, Gao, L, et al. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food Function 2018; 9: 4781–4790. DOI:
10.1039/c8fo01172a.
Google Scholar |
Crossref |
Medline33. Zhang, M, Sun, R, Xia, Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Tec 2020; 60: 101929. DOI:
10.1016/j.jddst.2020.101929.
Google Scholar |
Crossref34. Poonia, N, Kaur Narang, J, Lather, V, et al. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 2019; 181: 756–766, DOI:
10.1016/j.colsurfb.2019.06.004.
Google Scholar |
Crossref |
Medline35. Hu, C, Qiang, W, Ma, C, et al. Non-aqueous self-double-emulsifying drug delivery system: a new approach to enhance resveratrol solubility for effective transdermal delivery. Colloids Surf A: Phys 2016; 489: 360–369, DOI:
10.1016/j.colsurfa.2015.11.017.
Google Scholar |
Crossref36. Shrotriya, SN, Ranpise, NS, Vidhate, BV. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Deliv Translational Res 2017; 7: 37–52. DOI:
10.1007/s13346-016-0350-7.
Google Scholar |
Crossref |
Medline37. Hu, C, Gu, C, Fang, Q, et al. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: formulation, evaluation and vesicle-skin interaction. J Biomater Appl 2016; 30: 1080–1091 DOI:
10.1177/0885328215617891.
Google Scholar |
SAGE Journals |
ISI38. Schwarz, JC, Klang, V, Karall, S, et al. Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharmaceut 2012; 435: 69–75. DOI:
10.1016/j.ijpharm.2011.11.038.
Google Scholar |
Crossref |
Medline |
ISI39. Clausen, M-L, Slotved, H-C, Krogfelt, KA, et al. Tape stripping technique for stratum corneum protein analysis. Sci Rep 2016; 6: 19918. DOI:
10.1038/srep19918.
Google Scholar |
Crossref |
Medline40. Chaiyasan, W, Srinivas, SP, Tiyaboonchai, W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 2015; 21: 1224–1234. DOI:
10.1016/0963-8695(95)93695-3.
Google Scholar |
Crossref |
Medline41. Zeeb, B, Saberi, AH, Weiss, J, et al. Formation and characterization of filled hydrogel beads based on calcium alginate: factors influencing nanoemulsion retention and release. Food Hydrocolloid 2015; 50: 27–36. DOI:
10.1016/j.foodhyd.2015.02.041.
Google Scholar |
Crossref42. Nobari Azar, FA, Pezeshki, A, Ghanbarzadeh, B, et al. Pectin-sodium caseinat hydrogel containing olive leaf extract-nano lipid carrier: preparation, characterization and rheological properties. LWT- Food Sci Technol 2021; 148: 111757. DOI:
10.1016/j.lwt.2021.111757.
Google Scholar |
Crossref43. Fei, H, Li, S, Ran, Y, et al. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A Physicochem Eng Aspects 2008; 315: 210–216, DOI:
10.1016/j.colsurfa.2007.08.005.
Google Scholar |
Crossref
Comments (0)