1. Burström, G, Persson, O, Edström, E, Elmi-Terander, A. Augmented reality navigation in spine surgery: A systematic review. Acta Neurochir. 2021;163(3):843-852. doi:
10.1007/s00701-021-04708-3.
Google Scholar |
Crossref |
Medline2. Yoo, JS, Patel, DS, Hrynewycz, NM, Brundage, TS, Singh, K. The utility of virtual reality and augmented reality in spine surgery. Ann Transl Med. 2019;7(S5):S171. doi:
10.21037/atm.2019.06.38.
Google Scholar |
Crossref |
Medline3. Carl, B, Bopp, M, Saß, B, Nimsky, C. Microscope-based augmented reality in degenerative spine surgery: Initial experience. World Neurosurg. 2019;128:e541-e551. doi:
10.1016/j.wneu.2019.04.192.
Google Scholar |
Crossref |
Medline4. Auloge, P, Cazzato, RL, Ramamurthy, N, et al. Augmented reality and artificial intelligence-based navigation during percutaneous vertebroplasty: A pilot randomised clinical trial. Eur Spine J. 2020;29(7):1580-1589. doi:
10.1007/s00586-019-06054-6.
Google Scholar |
Crossref |
Medline5. Abe, Y, Sato, S, Kato, K, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J Neurosurg Spine. 2013;19(4):492-501. doi:
10.3171/2013.7.SPINE12917.
Google Scholar |
Crossref |
Medline6. Carl, B, Bopp, M, Saß, B, Pojskic, M, Voellger, B, Nimsky, C. Spine surgery supported by augmented reality. Glob Spine J. 2020;10(suppl_2):41S-55S. doi:
10.1177/2192568219868217.
Google Scholar |
SAGE Journals7. Yuk, FJ, Maragkos, GA, Sato, K, Steinberger, J. Current innovation in virtual and augmented reality in spine surgery. Ann Transl Med. 2021;9(1):94. doi:
10.21037/atm-20-1132.
Google Scholar |
Crossref |
Medline8. Edström, E, Burström, G, Omar, A, et al. Augmented reality surgical navigation in spine surgery to minimize staff radiation exposure. Spine (Phila Pa 1976). 2020;45(1):E45-E53. doi:
10.1097/BRS.0000000000003197.
Google Scholar |
Crossref |
Medline9. Dennler, C, Bauer, DE, Scheibler, AG, et al. Augmented reality in the operating room: A clinical feasibility study. BMC Musculoskelet Disord. 2021;22(1):1-9. doi:
10.1186/s12891-021-04339-w.
Google Scholar |
Crossref |
Medline10. Elmi-Terander, A, Burström, G, Nachabé, R, et al. Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: A matched-control study comparing accuracy. Sci Rep. 2020;10(1):1-8. doi:
10.1038/s41598-020-57693-5.
Google Scholar |
Crossref |
Medline11. Edström, E, Burström, G, Nachabe, R, Gerdhem, P, Terander, AE. A novel augmented-reality-based surgical navigation system for spine surgery in a hybrid operating room: Design, workflow, and clinical applications. Oper Neurosurg. 2020;18(5):496-502. doi:
10.1093/ons/opz236.
Google Scholar |
Crossref |
Medline12. Carl, B, Bopp, M, Saß, B, Voellger, B, Nimsky, C. Implementation of augmented reality support in spine surgery. Eur Spine J. 2019;28(7):1697-1711. doi:
10.1007/s00586-019-05969-4.
Google Scholar |
Crossref |
Medline13. Gertzbein, S, Robbins, S. Accuracy of pedicular screw placement in vivo. Spine. 1990;15(1):11-14. doi:
10.1097/00007632-199001000-00004.
Google Scholar |
Crossref |
Medline |
ISI14. Shillingford, JN, Laratta, JL, Park, PJ, et al. Human versus robot: A propensity-matched analysis of the accuracy of free hand versus robotic guidance for placement of S2 Alar-Iliac (S2AI) screws. Spine. 2018;43(21):E1297-E1304. doi:
10.1097/BRS.0000000000002694.
Google Scholar |
Crossref |
Medline15. Laratta, JL, Shillingford, JN, Meredith, JS, Lenke, LG, Lehman, RA, Gum, JL. Robotic versus freehand S2 alar iliac fixation: In-depth technical considerations. J Spine Surg. 2018;4(3):638-644. doi:
10.21037/jss.2018.06.13.
Google Scholar |
Crossref |
Medline16. Gibby, JT, Swenson, SA, Cvetko, S, Rao, R, Javan, R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14(3):525-535. doi:
10.1007/s11548-018-1814-7.
Google Scholar |
Crossref |
Medline17. Liebmann, F, Roner, S, von Atzigen, M, et al. Pedicle screw navigation using surface digitization on the Microsoft HoloLens. Int J Comput Assist Radiol Surg. 2019;14(7):1157-1165. doi:
10.1007/s11548-019-01973-7.
Google Scholar |
Crossref |
Medline18. Elmi-Terander, A, Nachabe, R, Skulason, H, et al. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine. 2018;43(14):1018-1023. doi:
10.1097/BRS.0000000000002502.
Google Scholar |
Crossref |
Medline19. Dennler, C, Jaberg, L, Spirig, J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15(1):1-8. doi:
10.1186/s13018-020-01690-x.
Google Scholar |
Crossref |
Medline20. De Vega, B, Navarro, AR, Gibson, A, Kalaskar, DM. Accuracy of pedicle screw placement methods in pediatrics and adolescents spinal surgery: A systematic review and meta-analysis. Glob Spine J. Published online. 2021. doi:
10.1177/21925682211003552.
Google Scholar |
SAGE Journals21. Good, CR, Orosz, L, Schroerlucke, SR, et al. Complications and revision rates in minimally invasive robotic-guided versus fluoroscopic-guided spinal fusions: The MIS ReFRESH prospective comparative study. Spine. 2021;46:1661-1668. doi:
10.1097/brs.0000000000004048.
Google Scholar |
Crossref |
Medline22. Yahanda, AT, Moore, E, Ray, WZ, Pennicooke, B, Jennings, JW, Molina, CA. First in-human report of the clinical accuracy of thoracolumbar percutaneous pedicle screw placement using augmented reality guidance. Neurosurg Focus. 2021;51(2):E10. doi:
10.3171/2021.5.focus21217.
Google Scholar |
Crossref |
Medline23. Burström, G, Nachabe, R, Persson, O, Edström, E, Elmi Terander, A. Augmented and virtual reality instrument tracking for minimally invasive spine surgery: A feasibility and accuracy study. Spine (Phila Pa 1976). 2019;44(15):1097-1104. doi:
10.1097/BRS.0000000000003006.
Google Scholar |
Crossref |
Medline24. Elmi-Terander, A, Burström, G, Nachabe, R, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: A first in-human prospective cohort study. Spine (Phila Pa 1976). 2019;44(7):517-525. doi:
10.1097/BRS.0000000000002876.
Google Scholar |
Crossref |
Medline25. Joseph, JR, Smith, BW, Liu, X, Park, P. Current applications of robotics in spine surgery: A systematic review of the literature. Neurosurg Focus. 2017;42(5):E2. doi:
10.3171/2017.2.FOCUS16544.
Google Scholar |
Crossref |
Medline26. Huntsman, KT, Ahrendtsen, LA, Riggleman, JR, Ledonio, CG. Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution. J Robot Surg. 2020;14(1):199-203. doi:
10.1007/s11701-019-00959-6.
Google Scholar |
Crossref |
Medline27. Van Dijk, JD, Van Den Ende, RPJ, Stramigioli, S, Köchling, M, Höss, N. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: Robot-guided pedicle screw accuracy. Spine (Phila Pa 1976). 2015;40(17):E986-E991. doi:
10.1097/BRS.0000000000000960.
Google Scholar |
Crossref |
Medline28. Jiang, B, Pennington, Z, Zhu, A, et al. Three-dimensional assessment of robot-assisted pedicle screw placement accuracy and instrumentation reliability based on a preplanned trajectory. J Neurosurg Spine. 2020;33(4):519-528. doi:
10.3171/2020.3.SPINE20208.
Google Scholar |
Crossref
Comments (0)