Advanced Bionics (2003). New methodology for fitting cochlear implants. Advanced Bionics Technical Reports. Available from:
https://advancedbionics.com/us/en/home/professionals/document-library/ab-technical-reports.html (accessed 15 June 2020).
Google Scholar Advanced Bionics (2009). Technical Report. HiRes with Fidelity ™ 120 sound processing implementing active current steering for increased spectral resolution in CII bionic Ear and HiRes 90K recipients. Valencia, California. Available from:
https://advancedbionics.com/content/dam/advancedbionics/Documents/Global/en_ce/Professional/TechnicalReports/SoundProcessing/AB_HiRes_Fidelity_120_Sound_Processing_report.pdf Google Scholar Advanced Bionics (2012). HiRes™ Optima clinical results. Sylmar, Calif, USA: Advanced Bionics White Paper. Available from:
https://advancedbionics.com/content/dam/advancedbionics/Documents/Global/en_ce/Professional/Technical-Reports/Sound-Processing/HiRes-Optima-White-Paper.pdf (accessed 7 October 2020).
Google Scholar Bierer, J. A. (2010). Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends in Amplification, 14(2), 84–95.
https://doi.org/10.1177/1084713810375249 Google Scholar |
SAGE Journals Bierer, J. A., Faulkner, K. F. (2010). Identifying cochlear implant channels with poor electrode-neuron interface: Partial tripolar, single-channel thresholds and psychophysical tuning curves. Ear and Hearing, 31(2), 247–258.
https://doi.org/10.1097/AUD.0b013e3181c7daf4 Google Scholar |
Crossref |
Medline |
ISI Blamey P., Arndt P., Bergeron F., Bredberg G., Brimacombe J., Facer G., Larky J., Lindström B., Nedzelski J., Peterson A., Shipp D., Staller S., & Whitford L. (1996). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiology & neuro-otology, 1(5), 293–306.
https://doi.org/10.1159/000259212 Google Scholar |
Crossref Blamey P., Artieres F., Başkent D., Bergeron F., Beynon A., Burke E., Dillier N., Dowell R., Fraysse B., Gallégo S., Govaerts P. J., Green K., Huber A. M., Kleine-Punte A., Maat B., Marx M., Mawman D., Mosnier I., O'Connor A. F., O’Leary S., ... Lazard D. S. (2013). Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiology & neuro-otology, 18(1), 36–47.
https://doi.org/10.1159/000343189 Google Scholar |
Crossref Brendel, M., Buechner, A., Krueger, B., Frohne-Buechner, C., Lenarz, T. (2008). Evaluation of the harmony sound processor in combination with the speech coding strategy HiRes 120. Otology and Neurotology, 29(2), 199–202.
https://doi.org/10.1097/mao.0b013e31816335c6 Google Scholar |
Crossref |
Medline Budenz, C. L., Cosetti, M. K., Coelho, D. H., Birenbaum, B., Babb, J., Waltzman, S. B., Roehm, P. C. (2011). The effects of cochlear implantation on speech perception in older adults. Journal of the American Geriatrics Society, 59(3), 446–453.
https://doi.org/10.1111/j.1532-5415.2010.03310.x Google Scholar |
Crossref |
Medline Buechner, A., Frohne-Buechner, C., Stoever, T., Gaertner, L., Battmer, R. D., Lenarz, T. (2005). Comparison of a paired or sequential stimulation paradigm with advanced bionics’ high-resolution mode. Otology and Neurotology, 26(5), 941–947.
https://doi.org/10.1097/01.mao.0000185069.27705.f0 Google Scholar |
Crossref |
Medline Busby, P. A., Arora, K. (2016). Effects of threshold adjustment on speech perception in nucleus cochlear implant recipients. Ear and Hearing, 37(3), 303–311.
https://doi.org/10.1097/AUD.0000000000000248 Google Scholar |
Crossref |
Medline Chang, S. A., Tyler, R. S., Dunn, C. C., Ji, H., Witt, S. A., Gantz, B., Hansen, M. (2010). Performance over time on adults with simultaneous bilateral cochlear implants. Journal of the American Academy of Audiology, 21(1), 35–43.
https://doi.org/10.3766/jaaa.21.1.5 Google Scholar |
Crossref |
Medline Cusumano, C., Friedmann, D. R., Fang, Y., Wang, B., Roland, J. T., Waltzman, S. B. (2017). Performance plateau in prelingually and postlingually deafened adult cochlear implant recipients. Otology and Neurotology, 38(3), 334–338.
https://doi.org/10.1097/MAO.0000000000001322 Google Scholar |
Crossref |
Medline de Graaff, F., Lissenberg-Witte, B. I., Kaandorp, M. W., Merkus, P., Goverts, S. T., Kramer, S. E., Smits, C. (2020). Relationship between speech recognition in quiet and noise and fitting parameters, impedances and ECAP thresholds in adult cochlear implant users. Ear and Hearing, 41(4), 935–947.
https://doi.org/10.1097/AUD.0000000000000814 Google Scholar |
Crossref |
Medline DeVries, L., Scheperle, R., Bierer, J. A. (2016). Assessing the electrode-neuron interface with the electrically evoked compound action potential, electrode position, and behavioral thresholds. Journal of the Association for Research in Otolaryngology, 17(3), 237–252.
https://doi.org/10.1007/s10162-016-0557-9 Google Scholar |
Crossref |
Medline Derinsu, U., Yüksel, M., Geçici, C. R., Çiprut, A., Akdeniz, E. (2019). Effects of residual speech and auditory deprivation on speech perception of adult cochlear implant recipients. Auris, Nasus, Larynx, 46(1), 58–63.
https://doi.org/10.1016/j.anl.2018.06.006 Google Scholar |
Crossref |
Medline Dillard, L. K., Saunders, G. H., Zobay, O., Naylor, G. (2020). Insights into conducting audiological research with clinical databases. American Journal of Audiology, 29(3S), 676–681.
https://doi.org/10.1044/2020_AJA-19-00067 Google Scholar |
Crossref |
Medline Donaldson, G. S., Dawson, P. K., Borden, L. Z. (2011). Within-subjects comparison of the HiRes and Fidelity120 speech processing strategies: Speech perception and its relation to place-pitch sensitivity. Ear and Hearing, 32(2), 238–250.
https://doi.org/10.1097/AUD.0b013e3181fb8390 Google Scholar |
Crossref |
Medline Dong, Y., Briaire, J. J., Siebrecht, M., Stronks, H. C., Frijns, J. (2021). Detection of translocation of cochlear implant electrode arrays by intracochlear impedance measurements. Ear and Hearing. 42, 1397–1404.
https://doi.org/10.1097/AUD.0000000000001033 Google Scholar Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46.
https://doi.org/10.1111/j.1600-0587.2012.07348.x Google Scholar |
Crossref |
ISI Dornhoffer, J. R., Reddy, P., Meyer, T. A., Schvartz-Leyzac, K. C., Dubno, J. R., McRackan, T. R. (2021). Individual differences in speech recognition changes after cochlear implantation. JAMA Otolaryngol Head Neck Surg, 147(3), e205094. Advance online publication.
https://doi.org/10.1001/jamaoto.2020.5094 Google Scholar Dunn, C. C., Tyler, R. S., Witt, S. A. (2005). Benefit of wearing a hearing aid on the unimplanted ear in adult users of a cochlear implant. Journal of Speech, Language, and Hearing Research, 48(3), 668–680.
https://doi.org/10.1044/1092-4388(2005/046) Google Scholar |
Crossref |
Medline Fayad, J. N., Makarem, A. O., Linthicum, F. H. (2009). Histopathologic assessment of fibrosis and new bone formation in implanted human temporal bones using 3D reconstruction. Otolaryngology--Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 141(2), 247–252.
https://doi.org/10.1016/j.otohns.2009.03.031 Google Scholar |
SAGE Journals |
ISI Firszt, J. B. (2003). HiResolution sound processing, Advanced Bionics white paper, Sylmar, Calif, USA. Available from:
https://advancedbionics.com/content/dam/advancedbionics/Documents/Global/en_ce/Professional/Technical-Reports/Sound-Processing/HiResolution_Sound_Processing_article.pdf Google Scholar Firszt, J. B., Holden, L. K., Reeder, R. M., Skinner, M. W. (2009). Speech recognition in cochlear implant recipients: Comparison of standard HiRes and HiRes 120 sound processing. Otology and Neurotology, 30(2), 146–152.
https://doi.org/10.1097/MAO.0b013e3181924ff8 Google Scholar |
Crossref |
Medline |
ISI Firszt, J. B., Holden, L. K., Skinner, M. W., Tobey, E. A., Peterson, A., Gaggl, W., Runge-Samuelson, C. L., Wackym, P. A. (2004). Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear and Hearing, 25(4), 375–387.
https://doi.org/10.1097/01.aud.0000134552.22205.ee Google Scholar |
Crossref |
Medline Firszt J. B., Koch D. B., Downing M., & Litvak, L. (2007). Current steering creates additional pitch percepts in adult cochlear implant recipients. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology, 28(5), 629–636.
https://doi.org/10.1097/01.mao.0000281803.36574.bc Google Scholar |
Crossref Franck, K. H., Hultman, D. M. (2020). Sharing the mass. Eye and Ear audiometer operating system. The Hearing Journal, 73(8), 44–45.
https://doi.org/10.1097/01.HJ.0000695852.23289.0c Google Scholar |
Crossref Green, K. M., Bhatt, Y., Mawman, D. J., O’Driscoll, M. P., Saeed, S. R., Ramsden, R. T., Green, M. W. (2007). Predictors of audiological outcome following cochlear implantation in adults. Cochlear Implants International, 8(1), 1–11.
https://doi.org/10.1179/cim.2007.8.1.1 Google Scholar |
Crossref |
Medline Gifford, R. H., Dorman, M. F. (2019). Bimodal hearing or bilateral cochlear implants? Ask the patient. Ear and Hearing, 40(3), 501–516.
https://doi.org/10.1097/AUD.0000000000000657 Google Scholar |
Crossref |
Medline Gifford, R. H., Driscoll, C. L., Davis, T. J., Fiebig, P., Micco, A., Dorman, M. F. (2015). A within-subject comparison of bimodal hearing. Bilateral Cochlear Implantation, and Bilateral Cochlear Implantation With Bilateral Hearing Preservation: High-Performing Patients. Otology and Neurotology, 36(8), 1331–1337.
https://doi.org/10.1097/MAO.0000000000000804 Google Scholar Gifford, R. H., Shallop, J. K., Peterson, A. M. (2008). Speech recognition materials and ceiling effects: Considerations for cochlear implant programs. Audiology and Neurotology, 13(3), 193–205.
https://doi.org/10.1159/000113510 Google Scholar |
Crossref |
Medline |
ISI Holden L. K., Finley C. C., Firszt J. B., Holden T. A., Brenner C., Potts L. G., Gotter B. D., Vanderhoof S. S., Mispagel K., Heydebrand G., & Skinner M. W. (2013). Factors affecting open-set word recognition in adults with cochlear implants. Ear and hearing, 34(3), 342–360.
https://doi.org/10.1097/AUD.0b013e3182741aa7 Google Scholar |
Crossref Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 6(2), 65–70.
Google Scholar |
ISI Hughes, M. L. (2012). Objective measures in cochlear implants. Plural. Retrieved from
http://ebookcentral.proquest.com Google Scholar Hughes, M. L., Stille, L. J. (2010). Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants. Ear and Hearing, 31(5), 679–692.
https://doi.org/10.1097/AUD.0b013e3181e1d19e Google Scholar |
Crossref |
Medline |
ISI Hughes M. L., Vander Werff K. R., Brown C. J., Abbas P. J., Kelsay D. M., Teagle H. F., & Lowder M. W. (2001). A longitudinal study of electrode impedance, the electrically evoked compound action potential, and behavioral measures in nucleus 24 cochlear implant users. Ear and hearing, 22(6), 471–486.
https://doi.org/10.1097/00003446-200112000-00004 Google Scholar |
Crossref Jahn, K. N., Bergan, M. D., Arenberg, J. G. (2020). Auditory detection thresholds and cochlear resistivity differ between pediatric cochlear implant listeners with enlarged vestibular aqueduct and those with connexin-26 mutations. American Journal of Audiology, 29, 23–34.
https://doi.org/10.1044/2019_AJA-19-00054 Google Scholar |
Crossref |
Medline Kamakura, T., Nadol, J. B. (2016). Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hearing Research, 339, 132–141.
https://doi.org/10.1016/j.heares.2016.06.015 Google Scholar |
Crossref |
Medline Kawano, A., Seldon, H. L., Clark, G. M., Ramsden, R. T., Raine, C. H. (1998). Intracochlear factors contributing to psychophysical percepts following cochlear implantation. Acta Oto-Laryngologica, 118(3), 313–326.
https://doi.org/10.1080/00016489850183386 Google Scholar |
Crossref |
Medline Kim, H., Kang, W. S., Park, H. J., Lee, J. Y., Park, J. W., Kim, Y., Chung, J. W. (2018). Cochlear implantation in postlingually deaf adults is time-sensitive towards positive outcome: Prediction using advanced machine learning techniques. Scientific Reports, 8(1), 1–9. 18; 8(1):18004.
https://doi.org/10.1038/s41598-018-36404-1 Google Scholar |
Crossref |
Medline Lazard, D. S., Giraud, A. L., Truy, E., Lee, H. J. (2011). Evolution of non-speech sound memory in postlingual deafness: Implications for cochlear implant rehabilitation. Neuropsychologia, 49(9), 2475–2482.
https://doi.org/10.1016/j.neuropsychologia.2011.04.025 Google Scholar |
Crossref |
Medline Lazard D. S., Vincent C., Venail F., Van de Heyning P., Truy E., Sterkers O., Skarzynski P. H., Skarzynski H., Schauwers K., O'Leary S., Mawman D., Maat B., Kleine-Punte A., Huber A. M., Green K., Govaerts P. J., Fraysse B., Dowell R., Dillier N., Burke E., ... Blamey P. J. (2012). Pre-, per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time. PloS one, 7(11), e48739. https://doi.org/10.1371/journal.pone.0048739
Google Scholar |
Crossref Leake, P. A., Hradek, G. T., Rebscher, S. J., Snyder, R. L. (1991). Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hearing Research, 54(2), 251–271.
https://doi.org/10.1016/0378-5955(91)90120-X Google Scholar |
Crossref |
Medline |
ISI Leake, P. A., Hradek, G. T., Snyder, R. L. (1999). Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. Journal of Comparative Neurology, 412(4), 543–562.
https://doi.org/10.1002/(sici)1096-9861(19991004)412:4<543::aid-cne1>3.0.co;2-3 Google Scholar |
Comments (0)