1.
Giuffrè, A, Vicente, JB. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid Med Cell Longev. 2018;2018:6290931.
Google Scholar |
Crossref |
Medline2.
Citi, V, Martelli, A, Gorica, E, Brogi, S, Testai, L, Calderone, V. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. J Adv Res. 2021;27:99-113.
Google Scholar |
Crossref |
Medline3.
d’Emmanuele di Villa Bianca, R, Sorrentino, R, Mirone, V, Cirino, G. Hydrogen sulfide and erectile function: a novel therapeutic target. Nat Rev Urol. 2011;8:286-289.
Google Scholar |
Crossref |
Medline4.
Szijártó, IA, Markó, L, Filipovic, MR, et al. Cystathionine γ-Lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension. 2018;71:1210-1217.
Google Scholar |
Crossref |
Medline5.
Zhang, H, Huang, Y, Chen, S, et al. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J Adv Res. 2021;27:19-30.
Google Scholar |
Crossref |
Medline6.
Shefa, U, Kim, M-S, Jeong, NY, Jung, J. Antioxidant and cell-signaling functions of hydrogen sulfide in the central nervous system. Oxid Med Cell Longev. 2018;2018:1873962.
Google Scholar |
Crossref |
Medline7.
Dilek, N, Papapetropoulos, A, Toliver-Kinsky, T, Szabo, C. Hydrogen sulfide: an endogenous regulator of the immune system. Pharmacol Res. 2020;161:105119.
Google Scholar |
Crossref |
Medline8.
Bazhanov, N, Ivanciuc, T, Wu, H, et al. Thiol activated hydrogen sulfide donors antiviral and anti-inflammatory activity in respiratory syncytial virus infection. Viruses. 2018;10:249.
Google Scholar |
Crossref9.
Dattilo, M . The role of host defences in covid 19 and treatments thereof. Mol Med. 2020;26:90.
Google Scholar |
Crossref |
Medline10.
Yang, G . H2S as a potential defense against COVID-19? Am J Physiol Cell Physiol. 2020;319:C244-C249.
Google Scholar |
Crossref |
Medline11.
Bourgonje, AR, Offringa, AK, van Eijk, LE, et al. N-Acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid Redox Signal. 2021;35:1207-1225.
Google Scholar |
Crossref |
Medline12.
Powell, CR, Dillon, KM, Matson, JB. A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol. 2018;149:110-123.
Google Scholar |
Crossref |
Medline13.
Szabo, C, Ransy, C, Módis, K, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2014;171:2099-2122.
Google Scholar |
Crossref |
Medline14.
Ereño-Orbea, J, Majtan, T, Oyenarte, I, Kraus, JP, Martínez-Cruz, LA. Structural insight into the molecular mechanism of allosteric activation of human cystathionine β-synthase by S adenosylmethionine. Proc Natl Acad Sci U S A. 2014;111:E3845-E3852.
Google Scholar |
Crossref |
Medline15.
Singh, S, Padovani, D, Leslie, RA, Chiku, T, Banerjee, R. Relative contributions of Cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem. 2009;284:22457-22466.
Google Scholar |
Crossref |
Medline |
ISI16.
Banerjee, R . Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol. 2017;37:115-121.
Google Scholar |
Crossref |
Medline17.
Kabil, O, Yadav, V, Banerjee, R. Heme-dependent metabolite switching regulates H2S synthesis in response to endoplasmic reticulum (ER) stress. J Biol Chem. 2016;291:16418-16423.
Google Scholar |
Crossref |
Medline18.
Yang, J, Minkler, P, Grove, D, et al. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun Biol. 2019;2:194.
Google Scholar |
Crossref |
Medline19.
Berrazaga, I, Micard, V, Gueugneau, M, Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: a critical review. Nutrients. 2019;11:1825.
Google Scholar |
Crossref20.
Zhubi-Bakija, F, Bajraktari, G, Bytyçi, I, et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: a position paper from the International Lipid Expert Panel (ILEP). Clin Nutr. 2021;40:255-276.
Google Scholar |
Crossref |
Medline21.
Stipanuk, MH, Ueki, I, Dominy, JE, Simmons, CR, Hirschberger, LL. Cysteine dioxygenase: a robust system for regulation of cellular Cysteine levels. Amino Acids. 2009;37:55-63.
Google Scholar |
Crossref |
Medline22.
Maclean, KN, Jiang, H, Aivazidis, S, et al. Taurine treatment prevents derangement of the hepatic γ-glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J. 2018;32:1265-1280.
Google Scholar |
Crossref |
Medline23.
Sun, Q, Wang, B, Li, Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension randomized, double-blind, placebo-controlled study. Hypertension. 2016;67:541-549.
Google Scholar |
Crossref |
Medline24.
Singh, S, Banerjee, R. PLP-dependent H2S biogenesis. Biochim Biophys Acta. 2011;1814:1518-1527.
Google Scholar |
Crossref |
Medline25.
Yin, J, Ren, W, Yang, G, et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res. 2016;60:134-146.
Google Scholar |
Crossref |
Medline26.
Ji, Y, Kong, X, Wang, G, et al. Distribution and determinants of plasma homocysteine levels in rural Chinese twins across the lifespan. Nutrients. 2014;6:5900-5914.
Google Scholar |
Crossref |
Medline27.
IBM Corp . IBM-SPSS® version 26.0. IBM Corp; 2019.
Google Scholar28.
Streiner, DL, Norman, GR. Correction for multiple testing: Is there a resolution? Chest. 2011;140:16-18.
Google Scholar |
Crossref |
Medline |
ISI29.
Mishanina, TV, Libiad, M, Banerjee, R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. 2015;11:457-464.
Google Scholar |
Crossref |
Medline30.
Perna, AF, Di Nunzio, A, Amoresano, A, et al. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients. Biochimie. 2016;126:97-107.
Google Scholar |
Crossref |
Medline31.
Gregory, JF, DeRatt, BN, Rios-Avila, L, Ralat, M, Stacpoole, PW. Vitamin B6 nutritional status and cellular availability of Pyridoxal 5-phosphate govern the function of the transsulfuration pathways canonical reactions and hydrogen sulfide production via side reactions. Biochimie. 2016;126:21-26.
Google Scholar |
Crossref |
Medline32.
Kabil, O, Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014;20:770-782.
Google Scholar |
Crossref |
Medline |
ISI33.
Shinkai, Y, Kumagai, Y. Sulfane sulfur in toxicology: a novel defense system against electrophilic stress. Toxicol Sci. 2019;170:3-9.
Google Scholar |
Crossref |
Medline34.
Kimura, H . Metabolic turnover of hydrogen sulfide. Front Physiol. 2012;3:101.
Google Scholar |
Crossref |
Medline35.
Hipólito, A, Nunes, SC, Vicente, JB, Serpa, J. Cysteine Aminotransferase (CAT): a pivotal sponsor in metabolic remodeling and an ally of 3-mercaptopyruvate Sulfurtransferase (MST) in cancer. Molecules. 2020;25:3984.
Google Scholar |
Crossref36.
Lu, SC . Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143-3153.
Google Scholar |
Crossref |
Medline |
ISI37.
Bailey, SW, Ayling, JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA. 2009;106:15424-15429.
Google Scholar |
Crossref |
Medline38.
Toohey, JI . Possible involvement of hydrosulfide in B12-dependent Methyl group transfer. Molecules. 2017;22:582.
Google Scholar |
Crossref39.
Crabtree, MJ, Hale, AB, Channon, KM. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency. Free Radic Biol Med. 2011;50:1639-1646.
Google Scholar |
Crossref |
Medline40.
Chen, P-H, Fu, YS, Wang, Y-M, Yang, K-H, Wang, DL, Huang, B. Hydrogen sulfide increases nitric oxide production and subsequent S-nitrosylation in endothelial cells. ScientificWorldJournal. 2014;2014:480387.
Google Scholar |
Medline41.
Bucci, M, Papapetropoulos, A, Vellecco, V, et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. 2010;30:1998-2004.
Google Scholar |
Crossref |
Medline42.
Zhang, C-Y, Li, XH, Zhang, T, Fu, J, Cui, X-D. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure. Biomed Rep. 2013;1:454-458.
Google Scholar |
Crossref |
Medline43.
D’Araio, E, Shaw, N, Millward, A, Demaine, A, Whiteman, M, Hodgkinson, A. Hydrogen sulfide induces heme oxygenase-1 in human kidney cells. Acta Diabetol. 2014;51:155-157.
Google Scholar |
Crossref |
Medline44.
Matsui, T, Sugiyama, R, Sakanashi, K, et al. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J Biol Chem. 2018;293:16931-16939.
Google Scholar |
Crossref |
Medline45.
Mitidieri, E, Tramontano, T, Gurgone, D, et al. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide. 2018;75:53-59.
Google Scholar |
Crossref |
Medline46.
Wójcik, OP, Koenig, KL, Zeleniuch-Jacquotte, A, Costa, M, Chen, Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010;208:19-25.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)