1. Meshcheryakova, A, Svoboda, M, Jaritz, M, et al. (2019) Interrelations of sphingolipid and lysophosphatidate signaling with immune system in ovarian cancer. Computational and Structural Biotechnology Journal 17: 537–560.
Google Scholar |
Crossref |
Medline2. Su, K-M, Wang, P-H, Yu, M-H, et al. (2020) The recent progress and therapy in endometriosis-associated ovarian cancer. Journal of the Chinese Medical Association 83(3): 227–232.
Google Scholar |
Crossref |
Medline3. Matulonis, UA, Sood, AK, Fallowfield, L, et al. (2016) Ovarian cancer. Nature reviews. Disease primers 2(21): 16061–16122.
Google Scholar |
Crossref |
Medline4. Stewart, C, Ralyea, C, Lockwood, S (2019) Ovarian cancer: an integrated review. Seminars in Oncology Nursing 35(2): 151–156.
Google Scholar |
Crossref |
Medline5. Torre, LA, Trabert, B, DeSantis, CE, et al. (2018) Ovarian cancer statistics, 2018. CA: A Cancer Journal for Clinicians 68(4): 284–296.
Google Scholar |
Crossref |
Medline6. Slack, FJ, Chinnaiyan, AM (2019) The role of non-coding RNAs in oncology. Cell 179(5): 1033–1055.
Google Scholar |
Crossref |
Medline7. Arun, G, Diermeier, SD, Spector, DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends in Molecular Medicine 24(3): 257–277.
Google Scholar |
Crossref |
Medline8. Nagy, O, Baráth, S, Ujfalusi, A (2019) The role of microRNAs in congenital heart disease. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine 30(2): 165–178.
Google Scholar9. Thyagarajan, A, Shaban, A, Sahu, RP (2018) MicroRNA-directed cancer therapies: implications in melanoma intervention. Journal of Pharmacology and Experimental Therapeutics 364(1): 1–12.
Google Scholar |
Crossref |
Medline10. Liu, P, Xie, X, Yang, A, et al. (2020) Melatonin regulates breast cancer progression by the lnc010561/miR-30/FKBP3 Axis. Molecular Therapy - Nucleic Acids 19: 765–774.
Google Scholar |
Crossref |
Medline11. Yin, H, Wang, Y, Wu, Y, et al. (2020) EZH2-mediated epigenetic silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis, and immune microenvironment Remodeling in breast cancer. Theranostics 10(19): 8494–8512.
Google Scholar |
Crossref |
Medline12. Saleh, AD, Cheng, H, Martin, SE, et al. (2019) Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer. Clinical Cancer Research 25(9): 2860–2873.
Google Scholar |
Crossref |
Medline13. Huang, XY, Zhang, PF, Wei, CY, et al. (2020) Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Molecular Cancer 19: 92–18.
Google Scholar |
Crossref |
Medline14. Li, Y, Zhou, J, Wang, J, et al. (2020) Mir-30b-3p affects the migration and invasion function of ovarian cancer cells by targeting the CTHRC1 gene. Biological Research 53(1): 10–18.
Google Scholar |
Crossref |
Medline15. Bao, S, Wang, X, Wang, Z, et al. (2018) MicroRNA-30 mediates cell invasion and metastasis in breast cancer. Biochemistry and Cell Biology 96(6): 825–831.
Google Scholar |
Crossref |
Medline16. Kumarswamy, R, Mudduluru, G, Ceppi, P, et al. (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting snai1 and is downregulated in non-small cell lung cancer. International journal of cancer 130(9): 2044–2053.
Google Scholar |
Crossref |
Medline17. Salem, M, O'Brien, JA, Bernaudo, S, et al. (2018) miR-590-3p promotes ovarian cancer growth and metastasis via a novel FOXA2-versican pathway. Cancer Research 78(15): 4175–4190.
Google Scholar |
Crossref |
Medline18. Moga, MA, Bălan, A, Dimienescu, OG, et al. (2019) Circulating miRNAs as biomarkers for endometriosis and endometriosis-related ovarian cancer-an overview. Journal of Clinical Medicine 8(5): 735.
Google Scholar |
Crossref19. Du, X, Liu, B, Luan, X, et al. (2018) miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Experimental and Therapeutic Medicine 15(1): 599–605.
Google Scholar |
Medline20. Chen, C, Zhou, L, Wang, H, et al. (2018) Long noncoding RNA CNALPTC1 promotes cell proliferation and migration of papillary thyroid cancer via sponging miR-30 family. American Journal of Cancer Research 8(1): 192–206.
Google Scholar |
Medline21. Zhou, Z, Chen, Y, Zhang, D, et al. (2019) MicroRNA-30-3p suppresses inflammatory factor-induced endothelial cell injury by targeting TCF21. Mediators of inflammation 2019: 1342190.
Google Scholar |
Crossref |
Medline22. Zhong, K, Chen, K, Han, L, et al. (2014) MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer 14(1): 703–708.
Google Scholar |
Crossref |
Medline23. Croset, M, Pantano, F, Kan, CWS, et al. (2018) miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Research 78(18): 5259–5273.
Google Scholar |
Crossref |
Medline24. Ho, JR, Chapeaublanc, E, Kirkwood, L, et al. (2012) Deregulation of rab and rab effector genes in bladder cancer. PloS One 7(6): e39469.
Google Scholar |
Crossref |
Medline25. Shibata, D, Mori, Y, Cai, K, et al. (2006) RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas. International Journal of Cancer 119(4): 801–806.
Google Scholar |
Crossref |
Medline26. Bao, J, Li, X, Li, Y, et al. (2020) MicroRNA-141-5p acts as a tumor suppressor via targeting RAB32 in chronic myeloid leukemia. Frontiers in Pharmacology 10: 1545.
Google Scholar |
Crossref |
Medline27. Brabletz, T, Kalluri, R, Nieto, MA, et al. (2018) EMT in cancer. Nature Reviews Cancer 18(2): 128–134.
Google Scholar |
Crossref |
Medline28. Da Silva, SD, Morand, GB, Alobaid, FA, et al. (2015) Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clinical & Experimental Metastasis 32(1): 55–63.
Google Scholar |
Crossref |
Medline29. Cheaito, KA, Bahmad, HF, Hadadeh, O, et al. (2019) EMT markers in locally advanced prostate cancer: predicting recurrence? Frontiers in Oncology 9: 131.
Google Scholar |
Crossref |
Medline30. Andrikopoulou, A, Liontos, M, Koutsoukos, K, et al. (2021) Clinical perspectives of BET inhibition in ovarian cancer. Cellular Oncology 19: 1–3.
Google Scholar
Comments (0)