1.
Strobl, J, Pandey, RV, Krausgruber, T, et al. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease. Sci Transl Med 2020; 12: eabb7028.
Google Scholar |
Crossref |
Medline2.
Hill, GR, Betts, BC, Tkachev, V, et al. Current concepts and advances in graft-versus-host disease immunology. Annu Rev Immunol 2021; 39: 19–49.
Google Scholar |
Crossref3.
Divito, SJ, Aasebo, AT, Matos, TR, et al. Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. J Clin Invest 2020; 130: 4624–4636.
Google Scholar |
Crossref |
Medline4.
Axt, L, Naumann, A, Toennies, J, et al. Retrospective single center analysis of outcome, risk factors and therapy in steroid refractory graft-versus-host disease after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2019; 54: 1805–1814.
Google Scholar |
Crossref |
Medline5.
Martin, PJ . How I treat steroid-refractory acute graft-versus-host disease. Blood 2020; 135: 1630–1638.
Google Scholar |
Crossref |
Medline6.
Zeiser, R, von Bubnoff, N, Butler, J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med 2020; 382: 1800–1810.
Google Scholar |
Crossref |
Medline7.
Malard, F, Huang, XJ, Sim, JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020; 34: 1229–1240.
Google Scholar |
Crossref |
Medline8.
Rafei, H, Jenq, RR. Microbiome-intestine cross talk during acute graft-versus-host disease. Blood 2020; 136: 401–409.
Google Scholar |
Crossref |
Medline9.
Peled, JU, Gomes, ALC, Devlin, SM, et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N Engl J Med 2020; 382: 822–834.
Google Scholar |
Crossref |
Medline10.
Holler, E, Butzhammer, P, Schmid, K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20: 640–645.
Google Scholar |
Crossref |
Medline |
ISI11.
Golob, JL, Pergam, SA, Srinivasan, S, et al. Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation. Clin Infect Dis 2017; 65: 1984–1991.
Google Scholar |
Crossref |
Medline12.
Kakihana, K, Fujioka, Y, Suda, W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 2016; 128: 2083–2088.
Google Scholar |
Crossref |
Medline |
ISI13.
Spindelboeck, W, Schulz, E, Uhl, B, et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica 2017; 102: e210–e213.
Google Scholar |
Crossref |
Medline |
ISI14.
Qi, X, Li, X, Zhao, Y, et al. Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front Immunol 2018; 9: 2195.
Google Scholar |
Crossref15.
van Lier, YF, Davids, M, Haverkate, NJE, et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med 2020; 12: eaaz8926.
Google Scholar |
Crossref |
Medline16.
Bilinski, J, Lis, K, Tomaszewska, A, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile. Results from a prospective, multicenter study. Am J Hematol 2021; 96: E88–E91.
Google Scholar |
Crossref |
Medline17.
Song, Y, Garg, S, Girotra, M, et al. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection. PLoS ONE 2013; 8: e81330.
Google Scholar |
Crossref |
Medline |
ISI18.
Biernat, MM, Urbaniak-Kujda, D, Dybko, J, et al. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2020; 48: 1–11.
Google Scholar |
SAGE Journals19.
Kaito, S, Toya, T, Yoshifuji, K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv 2018; 2: 3097–3101.
Google Scholar |
Crossref |
Medline20.
Burrello, C, Garavaglia, F, Cribiù, FM, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun 2018; 9: 5184.
Google Scholar |
Crossref |
Medline21.
Wei, Y-L, Chen, Y-Q, Gong, H, et al. Fecal Microbiota Transplantation Ameliorates Experimentally Induced Colitis in Mice by Upregulating AhR. Front Microbiol 2018; 9: 1921.
Google Scholar |
Crossref |
Medline22.
Glucksberg, H, Storb, R, Fefer, A, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974; 18: 295–304.
Google Scholar |
Crossref |
Medline |
ISI23.
Przepiorka, D, Weisdorf, D, Martin, P, et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant 1995; 15: 825–828.
Google Scholar |
Medline |
ISI24.
Cammarota, G, Ianiro, G, Tilg, H, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017; 66: 569–580.
Google Scholar |
Crossref |
Medline25.
Brüggen, MC, Strobl, J, Koszik, F, et al. Subcutaneous White adipose tissue of healthy young individuals harbors a leukocyte compartment distinct from skin and blood. J Invest Dermatol 2019; 139: 2052–2055.
Google Scholar |
Crossref |
Medline26.
MacMillan, ML, Robin, M, Harris, AC, et al. A refined risk score for acute graft-versus-host disease that predicts response to initial therapy, survival, and transplant-related mortality. Biol Blood Marrow Transplant 2015; 21: 761–767.
Google Scholar |
Crossref |
Medline |
ISI27.
Shono, Y, Docampo, MD, Peled, JU, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 2016; 8: 339ra371.
Google Scholar |
Crossref |
Medline |
ISI28.
Weber, D, Oefner, PJ, Dettmer, K, et al. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant 2016; 51: 1087–1092.
Google Scholar |
Crossref |
Medline29.
Vital, M, Karch, A, Pieper, DH. Colonic butyrate-producing communities in humans: an overview using omics data. mSystems 2017; 2: e00130-17.
Google Scholar |
Crossref |
Medline30.
Atarashi, K, Tanoue, T, Oshima, K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232–236.
Google Scholar |
Crossref |
Medline |
ISI31.
Narushima, S, Sugiura, Y, Oshima, K, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 2014; 5: 333–339.
Google Scholar |
Crossref |
Medline32.
Mathewson, ND, Jenq, R, Mathew, AV, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol 2016; 17: 505–513.
Google Scholar |
Crossref |
Medline33.
Riwes, M, Reddy, P. Short chain fatty acids: postbiotics/metabolites and graft versus host disease colitis. Semin Hematol 2020; 57: 1–6.
Google Scholar |
Crossref |
Medline34.
Alho, AC, Kim, HT, Chammas, MJ, et al. Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD. Blood 2016; 127: 646–657.
Google Scholar |
Crossref |
Medline35.
Ferrara, JLM, Chaudhry, MS. GVHD: biology matters. Blood Adv 2018; 2: 3411–3417.
Google Scholar |
Crossref |
Medline36.
Aparicio-Domingo, P, Romera-Hernandez, M, Karrich, JJ, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 2015; 212: 1783–1791.
Google Scholar |
Crossref |
Medline37.
Konya, V, Mjosberg, J. Innate lymphoid cells in graft-versus-host disease. Am J Transplant 2015; 15: 2795–2801.
Google Scholar |
Crossref |
Medline38.
Munneke, JM, Bjorklund, AT, Mjosberg, JM, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood 2014; 124: 812–821.
Google Scholar |
Crossref |
Medline39.
Janket, SJ, Ackerson, LK, Diamandis, EP. Drug-resistant bacteremia after fecal microbiota transplant. N Engl J Med 2020; 382: 1960.
Google Scholar |
Medline40.
Shogbesan, O, Poudel, DR, Victor, S, et al. A systematic review of the efficacy and safety of fecal microbiota transplant for clostridium difficile infection in immunocompromised patients. Can J Gastroenterol Hepatol 2018; 2018: 1394379.
Google Scholar |
Medline41.
Baxter, M, Ahmad, T, Colville, A, et al. Fatal aspiration pneumonia as a complication of fecal microbiota transplant. Clin Infect Dis 2015; 61: 136–137.
Google Scholar |
Crossref |
Medline |
ISI42.
Bilinski, J, Lis, K, Tomaszewska, A, et al. Eosinophilic gastroenteritis and graft-versus-host disease induced by transmission of Norovirus with fecal microbiota transplant. Transpl Infect Dis 2021; 23: e13386.
Google Scholar |
Crossref |
Medline43.
DeFilipp, Z, Bloom, PP, Torres Soto, M, et al. Drug-resistant e. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019; 381: 2043–2050.
Google Scholar |
Crossref |
Medline44.
Cammarota, G, Ianiro, G, Kelly, CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut 2019; 68: 2111–2121.
Google Scholar |
Crossref |
Medline
Comments (0)