1. Sweeney, MD, Ayyadurai, S, Zlokovic, BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 2016; 19: 771–783.
Google Scholar |
Crossref |
Medline |
ISI2. Rajan, AM, Ma, RC, Kocha, KM, et al. Dual function of perivascular fibroblasts in vascular stabilization in zebrafish. PLoS Genet 2020; 16: e1008800.
Google Scholar |
Crossref |
Medline3. Kisler, K, Nelson, AR, Montagne, A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18: 419–434.
Google Scholar |
Crossref |
Medline |
ISI4. Gonzales, AL, Klug, NR, Moshkforoush, A, et al. Contractile pericytes determine the direction of blood flow at capillary junctions. Proc Natl Acad Sci U S A 2020; 117: 27022–27033.
Google Scholar |
Crossref |
Medline5. Berthiaume, AA, Grant, RI, McDowell, KP, et al. Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 2018; 22: 8–16.
Google Scholar |
Crossref |
Medline6. Hall, CN, Reynell, C, Gesslein, B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. Apr 2014; 508: 55–60.
Google Scholar |
Crossref |
Medline |
ISI7. Hartmann, DA, Berthiaume, AA, Grant, RI, et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci 2021; 24: 633–645.
Google Scholar |
Crossref |
Medline8. Daneman, R, Zhou, L, Kebede, AA, et al. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010; 468: 562–566.
Google Scholar |
Crossref |
Medline |
ISI9. Armulik, A, Genové, G, Mäe, M, et al. Pericytes regulate the blood-brain barrier. Nature. Nov 2010; 468: 557–561.
Google Scholar |
Crossref |
Medline |
ISI10. Ben-Zvi, A, Lacoste, B, Kur, E, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature May 2014; 509: 507–511.
Google Scholar |
Crossref |
Medline11. Nikolakopoulou, AM, Montagne, A, Kisler, K, et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 2019; 22: 1089–1098.
Google Scholar |
Crossref |
Medline12. Vanlandewijck, M, He, L, Mäe, MA, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018; 554: 475–480.
Google Scholar |
Crossref |
Medline13. Zhang, ET, Inman, CB, Weller, RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 1990; 170: 111–123.
Google Scholar |
Medline |
ISI14. Dorrier, CE, Aran, D, Haenelt, EA, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci 2021; 24: 234–244.
Google Scholar |
Crossref |
Medline15. Kelly, KK, MacPherson, AM, Grewal, H, et al. Col1a1+ perivascular cells in the brain are a source of retinoic acid following stroke. BMC Neurosci 2016; 17: 49.
Google Scholar |
Crossref |
Medline16. Soderblom, C, Luo, X, Blumenthal, E, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 2013; 33: 13882–13887.
Google Scholar |
Crossref |
Medline |
ISI17. Yahn, SL, Li, J, Goo, I, et al. Fibrotic scar after experimental autoimmune encephalomyelitis inhibits oligodendrocyte differentiation. Neurobiol Dis 2020; 134: 104674.
Google Scholar |
Crossref |
Medline18. Fernández-Klett, F, Potas, JR, Hilpert, D, et al. Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 2013; 33: 428–439.
Google Scholar |
SAGE Journals |
ISI19. Göritz, C, Dias, DO, Tomilin, N, et al. A pericyte origin of spinal cord scar tissue. Science 2011; 333: 238–242.
Google Scholar |
Crossref |
Medline |
ISI20. Dias, DO, Kim, H, Holl, D, et al. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell. 03 2018; 173: 153–165.e22.
Google Scholar |
Crossref |
Medline21. Hartmann, DA, Underly, RG, Grant, RI, et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2015; 2: 041402.
Google Scholar |
Crossref |
Medline |
ISI22. Grant, RI, Hartmann, DA, Underly, RG, et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab 2019; 39: 411–425.
Google Scholar |
SAGE Journals |
ISI23. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci 2020; 4: e100115.
Google Scholar |
Crossref |
Medline24. Li, B, Ohtomo, R, Thunemann, M, et al. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 2020; 40: 501–512.
Google Scholar |
SAGE Journals |
ISI25. McDowell, KP, Berthiaume, AA, Tieu, T, et al. VasoMetrics: unbiased spatiotemporal analysis of microvascular diameter in multi-photon imaging applications. Quant Imaging Med Surg 2021; 11: 969–982.
Google Scholar |
Crossref |
Medline26. Hartmann, DA, Coelho-Santos, V, Shih, AY. Pericyte control of blood flow across microvascular zones in the central nervous system. Annu Rev Physiol 2021; 21. doi:10.1146/annurev-physiol-061121-040127.
Google Scholar27. Hill, RA, Tong, L, Yuan, P, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 2015; 87: 95–110.
Google Scholar |
Crossref |
Medline |
ISI28. Duvernoy, HM, Delon, S, Vannson, JL. Cortical blood vessels of the human brain. Brain Res Bull 1981; 7: 519–579.
Google Scholar |
Crossref |
Medline |
ISI29. Montagne, A, Nikolakopoulou, AM, Zhao, Z, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 2018; 24: 326–337.
Google Scholar |
Crossref |
Medline30. Uemura, MT, Maki, T, Ihara, M, et al. Brain microvascular pericytes in vascular cognitive impairment and dementia. Front Aging Neurosci 2020; 12: 80.
Google Scholar |
Crossref |
Medline31. Kur, J, Newman, EA, Chan-Ling, T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31: 377–406.
Google Scholar |
Crossref |
Medline |
ISI32. Zheng, B, Zhang, Z, Black, CM, et al. Ligand-dependent genetic recombination in fibroblasts: a potentially powerful technique for investigating gene function in fibrosis. Am J Pathol May 2002; 160: 1609–1617.
Google Scholar |
Crossref |
Medline33. Ornelas S, Berthiaume AA, Bonney SK, et al. Three-dimensional ultrastructure of the brain pericyte-endothelial interface. J Cereb Blood Flow Metab 2021; 41: 2185–2200.
Google Scholar |
SAGE Journals34. Harb, R, Whiteus, C, Freitas, C, et al. In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab 2013; 33: 146–156.
Google Scholar |
SAGE Journals |
ISI35. Iliff, JJ, Wang, M, Zeppenfeld, DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 2013; 33: 18190–18199.
Google Scholar |
Crossref |
Medline |
ISI36. Lam, MA, Hemley, SJ, Najafi, E, et al. The ultrastructure of spinal cord perivascular spaces: Implications for the circulation of cerebrospinal fluid. Sci Rep 2017; 7: 12924.
Google Scholar |
Crossref |
Medline37. Hannocks, MJ, Pizzo, ME, Huppert, J, et al. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab 2018; 38: 669–686.
Google Scholar |
SAGE Journals |
ISI38. Thomsen, MS, Routhe, LJ, Moos, T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37: 3300–3317.
Google Scholar |
SAGE Journals |
ISI39. Petroll, WM, Ma, L, Jester, JV. Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J Cell Sci 2003; 116: 1481–1491.
Google Scholar |
Crossref |
Medline40. van Veluw, SJ, Hou, SS, Calvo-Rodriguez, M, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 2020; 105: 549–561.e5.
Google Scholar |
Crossref |
Medline41. Kress, BT, Iliff, JJ, Xia, M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014; 76: 845–861.
Google Scholar |
Crossref |
Medline |
ISI42. Veluw, SJ, Scherlek, AA, Freeze, WM, et al. Different microvascular alterations underlie microbleeds and microinfarcts. Ann Neurol 2019; 86: 279–292.
Google Scholar |
Crossref |
Medline43. Iliff, JJ, Wang, M, Liao, Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4: 147ra111.
Google Scholar |
Crossref |
Medline |
ISI44. Rhee, S. Fibroblasts in three dimensional matrices: cell migration and matrix remodeling. Exp Mol Med 2009; 41: 858–865.
Google Scholar |
Crossref |
Medline45. Xu, J, Shi, GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014; 1842: 2106–2119.
Google Scholar |
Crossref |
Medline46. Månberg, A, Skene, N, Sanders, F, et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat Med 2021; 27: 640–646.
Google Scholar |
Crossref |
Medline47. Hawkes, CA, Härtig, W, Kacza, J, et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011; 121: 431–443.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)