Subsidence of Interbody Cage Following Oblique Lateral Interbody Fusion: An Analysis and Potential Risk Factors

1. Takahashi, K, Kitahara, H, Yamagata, M, et al. Long-term results of anterior interbody fusion for treatment of degenerative spondylolisthesis. Spine (Phila Pa 1976). 1990;15(11):1211-1215.
Google Scholar | Crossref | Medline2. Kepler, CK, Sharma, AK, Huang, RC, et al. Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine. 2012;16(4):329-333.
Google Scholar | Crossref | Medline3. Fujibayashi, S, Hynes, RA, Otsuki, B, Kimura, H, Takemoto, M, Matsuda, S. Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976). 2015;40(3):E175-E182.
Google Scholar | Crossref | Medline4. Abe, K, Orita, S, Mannoji, C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: Perspectives and indications from a retrospective, Multicenter Survey. Spine (Phila Pa 1976). 2017;42(1):55-62.
Google Scholar | Crossref | Medline5. Jin, C, Jaiswal, MS, Jeun, SS, Ryu, KS, Hur, JW, Kim, JS. Outcomes of oblique lateral interbody fusion for degenerative lumbar disease in patients under or over 65 years of age. J Orthop Surg Res. 2018;13(1):38.
Google Scholar | Crossref | Medline6. Kader, DF, Wardlaw, D, Smith, FW. Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000;55(2):145-149.
Google Scholar | Crossref | Medline | ISI7. Le, TV, Baaj, AA, Dakwar, E, et al. Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976). 2012;37(14):1268-1273.
Google Scholar | Crossref | Medline | ISI8. Malham, GM, Parker, RM, Blecher, CM, Seex, KA. Assessment and classification of subsidence after lateral interbody fusion using serial computed tomography. J Neurosurg Spine. 2015;23(5):589-597.
Google Scholar | Crossref | Medline9. Wewel, JT, Hartman, C, Uribe, JS. Timing of lateral lumbar interbody subsidence: Review of exclusive intraoperative subsidence. World Neurosurg. 2020;137:e208-e12.
Google Scholar | Crossref | Medline10. Frisch, RF, Luna, IY, Brooks, DM, Joshua, G, O’Brien, JR. Clinical and radiographic analysis of expandable versus static lateral lumbar interbody fusion devices with two-year follow-up. J Spine Surg. 2018;4(1):62-71.
Google Scholar | Crossref | Medline11. Tempel, ZJ, McDowell, MM, Panczykowski, DM, et al. Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg Spine. 2018;28(1):50-56.
Google Scholar | Crossref | Medline12. Woods, KR, Billys, JB, Hynes, RA. Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J. 2017;17(4):545-553.
Google Scholar | Crossref | Medline13. Satake, K, Kanemura, T, Nakashima, H, Yamaguchi, H, Segi, N, Ouchida, J. Cage subsidence in lateral interbody fusion with transpsoas approach: Intraoperative endplate injury or late-onset settling. Spine Surg Relat Res. 2017;1(4):203-210.
Google Scholar | Crossref | Medline14. Campbell, PG, Cavanaugh, DA, Nunley, P, et al. PEEK versus titanium cages in lateral lumbar interbody fusion: A comparative analysis of subsidence. Neurosurg Focus. 2020;49(3):E10.
Google Scholar | Crossref | Medline15. Tempel, ZJ, Gandhoke, GS, Okonkwo, DO, Kanter, AS. Impaired bone mineral density as a predictor of graft subsidence following minimally invasive transpsoas lateral lumbar interbody fusion. Eur Spine J. 2015;24(suppl 3):414-419.
Google Scholar | Crossref | Medline | ISI16. Xi, Z, Mummaneni, PV, Wang, M, et al. The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. Neurosurg Focus. 2020;49(2):E8.
Google Scholar | Crossref | Medline17. Palepu, V, Helgeson, M, Molyneaux-Francis, M, Nagaraja, S. The effects of bone microstructure on subsidence risk for Alif, Llif, Plif, and Tlif spine cages. J Biomech Eng. 2018;141(3):031002.
Google Scholar | Crossref18. Samtani, RG, Bernatz, JT, Harrison, R, Roy, S, Gupta, S, O’Brien, JR. The effect of alendronate on subsidence after lateral transpsoas interbody fusion: A preliminary report. Int J Spine Surg. 2019;13(3):289-295.
Google Scholar | Crossref | Medline19. Kaliya-Perumal, AK, Soh, TLT, Tan, M, Oh, JY. Factors influencing early disc height loss following lateral lumbar interbody fusion. Asian Spine J. 2020;14(5):601-607.
Google Scholar | Crossref | Medline20. Igarashi, H, Hoshino, M, Omori, K, et al. Factors influencing interbody cage subsidence following anterior cervical discectomy and fusion. Clin Spine Surg. 2019;32(7):297-302.
Google Scholar | Crossref | Medline21. Lang, G, Navarro-Ramirez, R, Gandevia, L, et al. Elimination of subsidence with 26-mm-wide cages in extreme lateral interbody fusion. World Neurosurg. 2017;104:644-652.
Google Scholar | Crossref | Medline22. Singhatanadgige, W, Sukthuayat, A, Tanaviriyachai, T, et al. Risk factors for polyetheretherketone cage subsidence following minimally invasive transforaminal lumbar interbody fusion. Acta Neurochir. 2021;163:2557-2565.
Google Scholar | Crossref | Medline23. Jones, C, Okano, I, Salzmann, SN, et al. Endplate volumetric bone mineral density is a predictor for cage subsidence following lateral lumbar interbody fusion: a risk factor analysis. Spine J. 2021;21:1729-1737.
Google Scholar | Crossref | Medline24. Adl Amini, D, Okano, I, Oezel, L, et al. Evaluation of cage subsidence in standalone lateral lumbar interbody fusion: novel 3D-printed titanium versus polyetheretherketone (PEEK) cage. Eur Spine J. 2021;30(8):2377-2384.
Google Scholar | Crossref | Medline25. Chen, E, Xu, J, Yang, S, et al. Cage subsidence and fusion rate in extreme lateral interbody fusion with and without fixation. World Neurosurg. 2019;122:e969-e77.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif