Bacillus cereus is an opportunistic pathogen that often causes severe infections such as bacteremia, with sphingomyelinase (SMase) being a crucial virulence factor. Although many strains of B. cereus carry the SMase gene, they are classified as SMase-producing and non-producing strains. The reason for different SMase production among B. cereus strains remains unknown. In this study, we investigated the relationship between SMase and the PlcR transcriptional regulation system to clarify the mechanism leading to varied SMase production among B. cereus strains.
We analyzed the sequence of the PlcR box, which is a transcriptional regulator binding site, located at the promoter region of SMase and phosphatidylcholine-specific phospholipase C. Based on differences in the PlcR box sequences, we classified the B. cereus strains into three groups (I, II, and III). SMase expression and activity were hardly detected in Group III strains. In Group I strains, SMase activity and its expression were maximal at the onset of the stationary phase and decreased during the stationary phase, whereas those were maintained during the stationary phase in Group II stains. On injection of B. cereus strains into mice or incubation with macrophages for phagocytosis assay, the SMase-producing Group I and II strains showed higher pathogenicity than Group III strains.
These findings suggest that PlcR box sequence in B. cereus affects the production of SMase, which may provide important clinical information for the detection of highly pathogenic B. cereus strains.
This article is protected by copyright. All rights reserved.
Comments (0)