1. Tam, PKH, Boyd, GP. Origin, course, and endings of abnormal enteric nerve fibers in Hirschsprung's disease defined by whole-mount immunohistochemistry. J Pediatr Surg. 1990;25:457-461.
Google Scholar |
Crossref |
Medline |
ISI2. Watanabe, Y, Ito, F, Ando, H, et al. Extrinsic nerve strands in the aganglionic segment of Hirschsprung’s disease. J Pediatr Surg. 1998;33(8):1233-1237.
Google Scholar |
Crossref |
Medline3. Kawana, T, Nada, O, Ikeda, S, et al. Distribution and localization of glial fibrillary acidic protein in colons affected by Hirschsprung’s disease. J Pediatr Surg. 1989;24:448-452.
Google Scholar |
Crossref |
Medline4. Kapur, RP . Calretinin-immunoreactive mucosal innervation in very short-segment Hirschsprung disease: a potentially misleading observation. Pediatr Dev Pathol. 2014;17(1):28-35.
Google Scholar |
SAGE Journals |
ISI5. Guinard-Samuel, V, Bonnard, A, De Lagausie, P, et al. Calretinin immunohistochemistry: a simple and efficient tool to diagnose Hirschsprung disease. Mod Pathol. 2009;22(10):1379-1384.
Google Scholar |
Crossref |
Medline |
ISI6. Kapur, RP, Reed, RC, Finn, LS, Patterson, K, Johanson, J, Rutledge, JC. Calretinin immunohistochemistry versus acetylcholinesterase histochemistry in the evaluation of suction rectal biopsies for Hirschsprung Disease. Pediatr Dev Pathol. 2009;12(1):6-15.
Google Scholar |
SAGE Journals |
ISI7. Meier-Ruge, W, Lutterbeck, PM, Herzog, B, Morger, R, Moser, R, Sharli, A. Acetylcholinesterase activity in suction biopsies of the rectum in the diagnosis of Hirschsprung disease. J Pediatr Surg. 1972;7:11-16.
Google Scholar |
Crossref |
Medline |
ISI8. Kapur, RP, Raess, PW, Hwang, S, Winter, C. Choline transporter immunohistochemistry: An effective substitute for acetylcholinesterase histochemistry to diagnose Hirschsprung disease with formalin-fixed paraffin-embedded rectal biopsies. Pediatr Dev Pathol. 2017;20(4):308-320.
Google Scholar |
SAGE Journals |
ISI9. Baumgarten, HG, Holstein, AF, Stelzener, F. Nervous elements in the human colon of Hirschsprung’s disease. Virchows Arch. 1973;358:113-136.
Google Scholar |
Crossref10. Grubisic, V, Gulbransen, BD. Enteric glia: the most alimentary of all glia. J Physiol. 2017;595(2):557-570.
Google Scholar |
Crossref |
Medline11. Gulbransen, BD, Sharkey, KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9(11):625-632.
Google Scholar |
Crossref |
Medline12. Howard, ER, Garrett, JR. Electron microscopy of myenteric nerves in Hirschsprung disease and in normal bowel. Gut. 1970;11:1007-1014.
Google Scholar |
Crossref |
Medline13. McClain, J, Grubisic, V, Fried, D, et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146(2):497-507.
Google Scholar |
Crossref |
Medline14. Jessen, KR, Mirsky, R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980;286:736-737.
Google Scholar |
Crossref |
Medline |
ISI15. Rao, M, Nelms, BD, Dong, L, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia. 2015;63(11):2040-2057.
Google Scholar |
Crossref |
Medline16. Jessen, KR, Mirsky, R. Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol. 1985;8(4-6):377-393.
Google Scholar |
Crossref |
Medline17. Badizadegan, K, Thomas, AR, Nagy, N, et al. Presence of intramucosal neuroglial cells in normal and aganglionic human colon. Am J Physiol Gastrointest Liver Physiol. 2014;307(10):G1002-G1012.
Google Scholar |
Crossref |
Medline18. Savidge, TC, Newman, P, Pothoulakis, C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344-1358.
Google Scholar |
Crossref |
Medline |
ISI19. Kawana, T, Nada, O, Ikeda, K. An immunohistochemical study of glial fibrillary acidic (GFA) protein and S-100 protein in the colon affected by Hirschsprung’s disease. Dig Dis Sci. 1988;33(9):1164-1174.
Google Scholar |
Medline20. Grundmann, D, Loris, E, Maas-Omlor, S, et al. Enteric Glia: S100, GFAP, and Beyond. Anat Rec. 2019;302(8):1333-1344.
Google Scholar |
Crossref21. Raasakka, A, Kursula, P. How does protein zero assemble compact myelin? Cells. 2020;9(8):1832.
Google Scholar |
Crossref22. Jessen, KR, Mirsky, R. Schwann cell precursors; multipotent glial cells in embryonic nerves. Front Mol Neurosci. 2019;12:69.
Google Scholar |
Crossref |
Medline23. Woods, C, Kapur, RP, Bischoff, A, et al. Neurons populating the rectal extrinsic nerves in humans express neuronal and Schwann cell markers. Neuro Gastroenterol Motil. 2020;33(7):e14074.
Google Scholar |
Medline24. Yoshimura, K, Negishi, T, Kaneko, A, et al. Monoclonal antibodies specific to the integral membrane protein P0 of bovine peripheral nerve myelin. Neurosci Res. 1996;25(1):41-49.
Google Scholar |
Crossref |
Medline
Comments (0)