Electroacupuncture altered expression of microRNAs in Stat5 knockout obese mice

1. Arroyo-Johnson, C, Mincey, KD. Obesity epidemiology worldwide. Gastroenterol Clin North Am 2016; 45: 571–579.
Google Scholar | Crossref | Medline2. Haslam, DW, James, WP. Obesity. Lancet 2005; 366: 1197–1209.
Google Scholar | Crossref | Medline3. Abente, EJ, Subramanian, M, Ramachandran, V, et al. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys 2016; 589: 108–119.
Google Scholar | Crossref | Medline4. Cai, Y, Yu, X, Hu, S, et al. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009; 7: 147–154.
Google Scholar | Crossref | Medline5. Miranda, K, Yang, X, Bam, M, et al. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes (Lond) 2018; 42: 1140–1150.
Google Scholar | Crossref | Medline6. Wang, M, Li, L, Liu, R, et al. Obesity-induced overexpression of miRNA-24 regulates cholesterol uptake and lipid metabolism by targeting SR-B1. Gene 2018; 668: 196–203.
Google Scholar | Crossref | Medline7. Price, NL, Singh, AK, Rotllan, N, et al. Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, and promotes obesity and insulin resistance. Cell Rep 2018; 22: 2133–2145.
Google Scholar | Crossref | Medline8. Yu, J, Lv, Y, Di, W, et al. MiR-27b-3p regulation in browning of human visceral adipose related to central obesity. Obesity (Silver Spring) 2018; 26: 387–396.
Google Scholar | Crossref | Medline9. Peng, J, Wu, Y, Deng, Z, et al. MiR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity via suppression of sirtuin-1 (SIRT1). Oncotarget 2017; 8: 70550–70563.
Google Scholar | Crossref | Medline10. Shen, W, Wang, Y, Lu, SF, et al. Acupuncture promotes white adipose tissue browning by inducing UCP1 expression on DIO mice. BMC Complement Altern Med 2014; 14: 501.
Google Scholar | Crossref | Medline11. Lee, JY, Muenzberg, H, Gavrilova, O, et al. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity. PLoS ONE 2008; 3: e1639.
Google Scholar | Crossref12. Cui, Y, Riedlinger, G, Miyoshi, K, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004; 24: 8037–8047.
Google Scholar | Crossref | Medline13. Fu, SP, Hong, H, Lu, SF, et al. Genome-wide regulation of electro-acupuncture on the neural Stat5-loss-induced obese mice. PLoS ONE 2017; 12: e0181948.
Google Scholar | Crossref14. Dismuke, WM, Challa, P, Navarro, I, et al. Human aqueous humor exosomes. Exp Eye Res 2015; 132: 73–77.
Google Scholar | Crossref | Medline15. Drewry, M, Helwa, I, Allingham, RR, et al. miRNA profile in three different normal human ocular tissues by miRNA-Seq. Invest Ophthalmol Vis Sci 2016; 57: 3731–3739.
Google Scholar | Crossref | Medline16. Griffiths-Jones, S, Grocock, RJ, van Dongen, S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34: D140–D144.
Google Scholar | Crossref17. Tam, S, Tsao, MS, McPherson, JD. Optimization of miRNA-seq data preprocessing. Brief Bioinform 2015; 16: 950–963.
Google Scholar | Crossref | Medline18. Garmire, LX, Subramaniam, S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA 2012; 18: 1279–1288.
Google Scholar | Crossref | Medline19. Carreras-Badosa, G, Bonmatí, A, Ortega, FJ, et al. Altered circulating miRNA expression profile in pregestational and gestational obesity. J Clin Endocrinol Metab 2015; 100: E1446–E1456.
Google Scholar | Crossref | Medline20. Fu, X, Jin, L, Han, L, et al. miR-129-5p inhibits adipogenesis through autophagy and may be a potential biomarker for obesity. Int J Endocrinol 2019; 2019: 5069578.
Google Scholar | Crossref | Medline21. Cairo, M, Villarroya, J. The role of autophagy in brown and beige adipose tissue plasticity. J Physiol Biochem 2020; 76: 213–226.
Google Scholar | Crossref | Medline22. Bhatt, V, Khayati, K, Hu, ZS, et al. Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis. Genes Dev 2019; 33: 150–165.
Google Scholar | Crossref | Medline23. Ahmed, M, Lai, TH, Hwang, JS, et al. Transcriptional regulation of autophagy genes via stage-specific activation of CEBPB and PPARG during adipogenesis: a systematic study using public gene expression and transcription factor binding datasets. Cells 2019; 8: 1321.
Google Scholar | Crossref24. Wu, Z, Zou, Z, Zou, R, et al. Electro-acupuncture pretreatment induces tolerance against cerebral ischemia/reperfusion injury through inhibition of the autophagy pathway. Mol Med Rep 2015; 11: 4438–4446.
Google Scholar | Crossref | Medline25. Tian, T, Sun, Y, Wu, H, et al. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. Sci Rep 2016; 6: 19714.
Google Scholar | Crossref | Medline26. Wang, SJ, Wang, Q, Ma, J, et al. Effect of moxibustion on mTOR-mediated autophagy in rotenone-induced Parkinson’s disease model rats. Neural Regen Res 2018; 13: 112–118.
Google Scholar | Crossref | Medline27. Altshuler-Keylin, S, Shinoda, K, Hasegawa, Y, et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab 2016; 24: 402–419.
Google Scholar | Crossref | Medline28. Kim, D, Kim, J, Kang, Y, et al. Suppression of brown adipocyte autophagy improves energy metabolism by regulating mitochondrial turnover. Int J Mol Sci 2019; 20: 3520.
Google Scholar | Crossref29. Deng, J, Guo, Y, Yuan, F, et al. Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening. Autophagy 2020; 16: 451–465.
Google Scholar | Crossref | Medline30. Xiao, W, Xiong, Z, Xiong, W, et al. Melatonin/PGC1A/UCP1 promotes tumor slimming and represses tumor progression by initiating autophagy and lipid browning. J Pineal Res 2019; 67: e12607.
Google Scholar | Crossref | Medline31. Tian, Y, Peng, B, Fu, X. New ADCY3 variants dance in obesity etiology. Trends Endocrinol Metab 2018; 29: 361–363.
Google Scholar | Crossref | Medline32. Siljee, JE, Wang, Y, Bernard, AA, et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat Genet 2018; 50: 180–185.
Google Scholar | Crossref | Medline33. Jia, L, Jiang, Y, Li, X, et al. Purβ promotes hepatic glucose production by increasing Adcy6 transcription. Mol Metab 2020; 31: 85–97.
Google Scholar | Crossref | Medline34. Dahlmans, D, Houzelle, A, Jörgensen, JA, et al. Evaluation of muscle microRNA expression in relation to human peripheral insulin sensitivity: a cross-sectional study in metabolically distinct subject groups. Front Physiol 2017; 8: 711.
Google Scholar | Crossref | Medline35. Zhou, B, Li, H, Shi, J. miR27 inhibits the NF-kappa B signaling pathway by targeting leptin in osteoarthritic chondrocytes. Int J Mol Med 2017; 40: 523–530.
Google Scholar | Crossref | Medline36. Shi, M, Yang, S, Zhu, X, et al. The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal 2019; 62: 109334.
Google Scholar | Crossref | Medline37. Kowalski, E, Geng, S, Rathes, A, et al. Toll-interacting protein differentially modulates HIF1alpha and STAT5-mediated genes in fibroblasts. J Biol Chem 2018; 293: 12239–12247.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif