Clinical Outcomes of Robotic Versus Freehand Pedicle Screw Placement After One-to Three-Level Lumbar Fusion

1. Li, HM, Zhang, RJ, Shen, CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine. 2020;45(2):E111.
Google Scholar | Crossref | Medline2. Thomsen, K, Christensen, FB, Eiskjaer, SP, Hansen, ES, Fruensgaard, S, Bünger, CE. 1997 Volvo Award winner in clinical studies: the effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine. 1997:22(24):2813.
Google Scholar | Crossref | Medline | ISI3. France, JC, Yaszemski, MJ, Lauerman, WC, et al. A randomized prospective study of posterolateral lumbar fusion: outcomes with and without pedicle screw instrumentation. Spine. 1999;24(6):553-560.
Google Scholar | Crossref | Medline | ISI4. Sarwahi, V, Wendolowski, SF, Gecelter, RC, et al. Are we underestimating the significance of pedicle screw misplacement? Spine. 2016;41(9):E548-E555.
Google Scholar | Crossref | Medline5. Castro, WH, Halm, H, Jerosch, J, Malms, J, Steinbeck, J, Blasius, S. Accuracy of Pedicle Screw placement in lumbar vertebrae. Spine. 1996:21(11):247–255.
Google Scholar | Crossref6. Roser, F, Tatagiba, M, Maier, G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72(suppl_1):A12-A18.
Google Scholar | Crossref | Medline7. Alaid, A, von Eckardstein, K, Smoll, NR, et al. Robot guidance for percutaneous minimally invasive placement of pedicle screws for pyogenic spondylodiscitis is associated with lower rates of wound breakdown compared to conventional fluoroscopy-guided instrumentation. Neurosurg Rev. 2018;41(2):489-496.
Google Scholar | Crossref | Medline8. Hyun, SJ, Kim, KJ, Jahng, TA, Kim, HJ. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine. 2017:42(6):353-358.
Google Scholar | Crossref | Medline9. Devito, DP, Kaplan, L, Dietl, R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with spineassist surgical robot: retrospective study. Spine. 2010:35(24):2109.
Google Scholar | Crossref | Medline10. Ghasem, A, Sharma, A, Greif, DN, Alam, M, Maaieh, MA. The arrival of robotics in spine surgery: a review of the literature. Spine. 2018;43(23):1670-1677.
Google Scholar | Crossref | Medline11. Feng, S, Tian, W, Wei, Y. Clinical effects of oblique lateral interbody fusion by conventional open versus percutaneous robot-assisted minimally invasive pedicle screw placement in elderly patients. Orthop Surg. 2020;12(1):86-93.
Google Scholar | Crossref | Medline12. Hu, X, Lieberman, IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clinical Orthopaedics and Related Research®. 2014;472(6):1839-1844.
Google Scholar | Crossref | Medline13. Divi, SN, Goyal, DKC, Bowles, DR, et al. How do spinopelvic parameters influence patient-reported outcome measurements after lumbar decompression? The Spine Journal. 2020;20(10):1610-1617.
Google Scholar | Crossref14. Parker, SL, Mendenhall, SK, Shau, DN, et al. Minimum clinically important difference in pain, disability, and quality of life after neural decompression and fusion for same-level recurrent lumbar stenosis: understanding clinical versus statistical significance. J Neurosurg Spine. 2001;16(5):471-478.
Google Scholar | Crossref15. Rampersaud, YR, Simon, DA, Foley, KT. Accuracy requirements for image-guided spinal pedicle screw placement. Spine. 2001;26(4):352-359.
Google Scholar | Crossref | Medline | ISI16. Kantelhardt, SR, Martinez, R, Baerwinkel, S, Burger, R, Giese, A, Rohde, V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860-868.
Google Scholar | Crossref | Medline17. Han, X, Tian, W, Liu, Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine. 2019;30(5):615-622.
Google Scholar | Crossref18. Kim, H-J, Jung, W-I, Chang, B-S, Lee, C-K, Kang, K-T, Yeom, JS. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot Comput Assist Surg. 2017;13(3):e1779.
Google Scholar | Crossref19. Kim, H-J, Kang, K-T, Chun, H-J, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Med Robot Comput Assist Surg. 2018;14(4):e1917.
Google Scholar | Crossref | Medline20. Park, S-M, Kim, H-J, Lee, SY, Chang, B-S, Lee, C-K, Yeom, JS. Radiographic and clinical outcomes of robot-assisted posterior pedicle screw fixation: two-year results from a randomized controlled trial. Yonsei Med J. 2018;59(3):438-444.
Google Scholar | Crossref | Medline21. Kim, H-J, Kang, K-T, Chun, H-J, et al. Comparative study of 1-year clinical and radiological outcomes using robot-assisted pedicle screw fixation and freehand technique in posterior lumbar interbody fusion: a prospective, randomized controlled trial. Int J Medical Robotics Comput Assisted Surg. 2018;14(4):e1917.
Google Scholar | Crossref | Medline22. Ajiboye, RM, Koltsov, JCB, Karamian, B, et al. Computer-assisted surgical navigation is associated with an increased risk of neurological complications: a review of 67,264 posterolateral lumbar fusion cases. J Spine Surg. 2019;5(4):457-465.
Google Scholar | Crossref | Medline23. Lieber, AM, Kirchner, GJ, Kerbel, YE, Khalsa, AS. Robotic-assisted pedicle screw placement fails to reduce overall postoperative complications in fusion surgery. The Spine Journal. 2019;19(2):212-217.
Google Scholar | Crossref24. Isaacs, RE, Podichetty, VK, Santiago, P, et al. Minimally invasive microendoscopy-assisted transforaminal lumbar interbody fusion with instrumentation. J Neurosurg Spine. 2001;3(2):98-105.
Google Scholar | Crossref25. Lieberman, IH, Hardenbrook, MA, Wang, JC, Guyer, RD. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. Clinical Spine Surgery. 2012:25(5):241.
Google Scholar26. Schatlo, B, Martinez, R, Alaid, A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir. 2015;157(10):1819-1823.
Google Scholar | Crossref | Medline27. Urakov, TM, Chang, KH-k, Burks, SS, Wang, MY. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus. 2017;42(5):E4.
Google Scholar | Crossref | Medline28. Devito, DP, Kaplan, L, Dietl, R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with spineassist surgical robot. Spine. 2010;35(24):2109-2115.
Google Scholar | Crossref | Medline29. Fiani, B, Quadri, SA, Farooqui, M, et al. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurg Rev. Published Online. 2018;43(1):1-9.
Google Scholar | Medline30. Härtl, R, Lam, KS, Wang, J, Korge, A, Kandziora, F, Audigé, L. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013;79(1):162-172.
Google Scholar | Crossref | Medline | ISI31. Farber, SH, Pacult, MA, Godzik, J, et al. Robotics in spine surgery: a technical overview and review of key concepts. Frontiers Surg. 2021;8:578674.
Google Scholar | Crossref | Medline32. Kantelhardt, SR, Martinez, R, Baerwinkel, S, Burger, R, Giese, A, Rohde, V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860-868.
Google Scholar | Crossref | Medline33. Urbanski, W, Jurasz, W, Wolanczyk, M, et al. Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery. Clin Orthop Relat Res. 2018;476(5):1020-1027.
Google Scholar | Crossref | Medline34. Molliqaj, G, Schatlo, B, Alaid, A, et al. Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery. Neurosurg Focus. 2001;42(5):E14.
Google Scholar | Crossref35. Ringel, F, Stüer, C, Reinke, A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine. 2012:37(8):E496-E501.
Google Scholar | Crossref | Medline36. Malham, GM, Wells-Quinn, T. What should my hospital buy next?-Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery. J Spine Surg. 2019;5(1):155-165.
Google Scholar | Crossref | Medline37. Harada, GK, Khan, JM, Vetter, C, et al. Does the number of levels fused affect spinopelvic parameters and clinical outcomes following posterolateral lumbar fusion for low-grade spondylolisthesis? Global Spine J. 2021;11(1):116-121.
Google Scholar | SAGE Journals | ISI38. Lettice, JJ, Kula, TA, Derby, R, Kim, B-J, Lee, S-H, Seo, KS. Does the number of levels affect lumbar fusion outcome? Spine. 2005;30(6):675-681.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif