Boivin, DB, Shechter, A, Boudreau, P, Begum, EA, Ng Ying-Kin, NMK (2016) Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women. Proc Natl Acad Sci U S A 113:10980-10985.
Google Scholar |
Crossref |
Medline |
ISI
Brown, SA, Zumbrunn, G, Fleury-Olela, F, Preitner, N, Schibler, U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574-1583.
Google Scholar |
Crossref |
Medline |
ISI
Buhr, ED, Yoo, S-H, Takahashi, JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379-385.
Google Scholar |
Crossref |
Medline |
ISI
Calabro, K, Curtis, A, Galarneau, J-R, Krucker, T, Bigio, IJ (2011) Gender variations in the optical properties of skin in murine animal models. J Biomed Opt 16:011008.
Google Scholar |
Crossref |
Medline
Calligaro, H, Kinane, C, Bennis, M, Coutanson, C, Dkhissi-Benyahya, O (2020) A standardized method to assess the endogenous activity and the light-response of the retinal clock in mammals. Mol Vis 26:106-116.
Google Scholar |
Medline
Cohen, AL, Leise, TL, Welsh, DK (2012) Bayesian statistical analysis of circadian oscillations in fibroblasts. J Theor Biol 314:182-191.
Google Scholar |
Crossref |
Medline |
ISI
Collaco, AM, Geusz, ME (2003) Monitoring immediate-early gene expression through firefly luciferase imaging of HRS/J hairless mice. BMC Physiol 3:8.
Google Scholar |
Crossref |
Medline
Crosby, P, Hamnett, R, Putker, M, Hoyle, NP, Reed, M, Karam, CJ, Maywood, ES, Stangherlin, A, Chesham, JE, Hayter, EA, et al. (2019) Insulin/IGF-1 Drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177:896-909.e20.
Google Scholar |
Crossref |
Medline
Curtis, A, Calabro, K, Galarneau, J-R, Bigio, IJ, Krucker, T (2011) Temporal variations of skin pigmentation in C57BL/6 mice affect optical bioluminescence quantitation. Mol Imaging Biol 13:1114-1123.
Google Scholar |
Crossref |
Medline
da Silva, LP, da Silva, JCGE (2011) Kinetics of inhibition of firefly luciferase by dehydroluciferyl-coenzyme A, dehydroluciferin and L-luciferin. Photochem Photobiol Sci off J Eur Photochem Assoc Eur Soc Photobiol 10:1039-1045.
Google Scholar |
Crossref |
Medline |
ISI
Evans, MS, Chaurette, JP, Adams, ST, Reddy, GR, Paley, MA, Aronin, N, Prescher, JA, Miller, SC (2014) A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11:393-395.
Google Scholar |
Crossref |
Medline
Gross, S, Abraham, U, Prior, JL, Herzog, ED, Piwnica-Worms, D (2007) Continuous delivery of D-luciferin by implanted micro-osmotic pumps enables true real-time bioluminescence imaging of luciferase activity in vivo. Mol Imaging 6:121-130.
Google Scholar |
SAGE Journals |
ISI
Hamada, T, Sutherland, K, Ishikawa, M, Miyamoto, N, Honma, S, Shirato, H, Honma, K (2016) In vivo imaging of clock gene expression in multiple tissues of freely moving mice. Nat Commun 7:11705.
Google Scholar |
Crossref |
Medline
Hiler, DJ, Greenwald, ML, Geusz, ME (2006) Imaging gene expression in live transgenic mice after providing luciferin in drinking water. Photochem Photobiol Sci 5:1082-1085.
Google Scholar |
Crossref |
Medline
Hoshino, Y, Mizuno, S, Kato, K, Mizuno-Iijima, S, Tanimoto, Y, Ishida, M, Kajiwara, N, Sakasai, T, Miwa, Y, Takahashi, S, et al. (2017) Simple generation of hairless mice for in vivo imaging. Exp Anim 66:437-445.
Google Scholar |
Crossref |
Medline
Izumi, H, Ishimoto, T, Yamamoto, H, Mori, H (2017) Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain. BMC Neurosci 18:18.
Google Scholar |
Crossref |
Medline
Kloehn, I, Pillai, SB, Officer, L, Klement, C, Gasser, PJ, Evans, JA (2016) Sexual differentiation of circadian clock function in the adrenal gland. Endocrinology 157:1895-1904.
Google Scholar |
Crossref |
Medline
Konger, RL, Derr-Yellin, E, Hojati, D, Lutz, C, Sundberg, JP (2016) Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice. Exp Dermatol 25:688-693.
Google Scholar |
Crossref |
Medline
Kuljis, DA, Loh, DH, Truong, D, Vosko, AM, Ong, ML, McClusky, R, Arnold, AP, Colwell, CS (2013) Gonadal- and sex-chromosome-dependent sex differences in the circadian system. Endocrinology 154:1501-1512.
Google Scholar |
Crossref |
Medline |
ISI
Leise, TL (2017) Analysis of nonstationary time series for biological rhythms research. J Biol Rhythms 32:187-194.
Google Scholar |
SAGE Journals |
ISI
Leise, TL, Harrington, ME (2011) Wavelet-based time series analysis of circadian rhythms. J Biol Rhythms 26:454-463.
Google Scholar |
SAGE Journals |
ISI
Leise, TL, Goldberg, A, Michael, J, Montoya, G, Solow, S, Molyneux, P, Vetrivelan, R, Harrington, ME (2020) Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 51:2343-2354.
Google Scholar |
Crossref |
Medline
Li, H, Fan, L, Zhu, S, Shin, MK, Lu, F, Qu, J, Hou, L (2017) Epilation induces hair and skin pigmentation through an EDN3/EDNRB-dependent regenerative response of melanocyte stem cells. Sci Rep 7:7272.
Google Scholar |
Crossref |
Medline
Mofford, DM, Adams, ST, Reddy, GSKK, Reddy, GR, Miller, SC (2015) Luciferin amides enable in vivo bioluminescence detection of endogenous fatty acid amide hydrolase activity. J Am Chem Soc 137:8684-8687.
Google Scholar |
Crossref |
Medline
Nakajima, K, Hamada, K, Ito, R, Yoshida, Y, Sutherland, K, Ishikawa, M, Ozaki, M, Shirato, H, Hamada, T (2021) Stability of d-luciferin for bioluminescence to detect gene expression in freely moving mice for long durations. Lumin J Biol Chem Lumin 36:94-98.
Google Scholar |
Crossref
Noguchi, T, Harrison, EM, Sun, J, May, D, Ng, A, Welsh, DK, Gorman, MR (2020) Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude. Eur J Neurosci 51:2329-2342.
Google Scholar |
Crossref |
Medline
Plikus, MV, Chuong, C-M (2008) Complex hair cycle domain patterns and regenerative hair waves in living rodents. J Invest Dermatol 128:1071-1080.
Google Scholar |
Crossref |
Medline |
ISI
Poulsen, RC, Warman, GR, Sleigh, J, Ludin, NM, Cheeseman, JF (2018) How does general anaesthesia affect the circadian clock? Sleep Med Rev 37:35-44.
Google Scholar |
Crossref |
Medline
Qian, J, Morris, CJ, Caputo, R, Wang, W, Garaulet, M, Scheer, FAJL (2019) Sex differences in the circadian misalignment effects on energy regulation. Proc Natl Acad Sci U S A 116:23806-23812.
Google Scholar |
Crossref |
Medline
Reddy, GR, Thompson, WC, Miller, SC (2010) Robust light emission from cyclic alkylaminoluciferin substrates for firefly luciferase. J Am Chem Soc 132:13586-13587.
Google Scholar |
Crossref |
Medline
Saini, C, Liani, A, Curie, T, Gos, P, Kreppel, F, Emmenegger, Y, Bonacina, L, Wolf, J-P, Poget, Y-A, Franken, P, et al. (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27:1526-1536.
Google Scholar |
Crossref |
Medline |
ISI
Schibler, U, Gotic, I, Saini, C, Gos, P, Curie, T, Emmenegger, Y, Sinturel, F, Gosselin, P, Gerber, A, Fleury-Olela, F, et al. (2015) Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol 80:223-232.
Google Scholar |
Crossref |
Medline
Shimomura, O (2012) Bioluminescence: chemical principles and methods. Singapore: World Scientific.
Google Scholar |
Crossref
Tahara, Y, Kuroda, H, Saito, K, Nakajima, Y, Kubo, Y, Ohnishi, N, Seo, Y, Otsuka, M, Fuse, Y, Ohura, Y, et al. (2012) In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 22:1029-1034.
Google Scholar |
Crossref |
Medline |
ISI
Troy, T, Jekic-McMullen, D, Sambucetti, L, Rice, B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9-23.
Google Scholar |
Crossref |
Medline
van der Vinne, V, Martin Burgos, B, Harrington, ME, Weaver, DR (2020) Deconstructing circadian disruption: assessing the contribution of reduced peripheral oscillator amplitude on obesity and glucose intolerance in mice. J Pineal Res 69:e12654.
Google Scholar |
Medline
van der Vinne, V, Swoap, SJ, Vajtay, TJ, Weaver, DR (2018) Desynchrony between brain and peripheral clocks caused by CK1δ/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proc Natl Acad Sci U S A 115:E2437-E2446.
Google Scholar |
Crossref |
Medline
Welsh, DK, Yoo, S-H, Liu, AC, Takahashi, JS, Kay, SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol CB 14:2289-2295.
Google Scholar |
Crossref |
Medline |
ISI
Wu, G, Anafi, RC, Hughes, ME, Kornacker, K, Hogenesch, JB (2016) MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinforma Oxf Engl 32:3351-3353.
Google Scholar |
Crossref |
Medline |
ISI
Yan, L, Silver, R (2016) Neuroendocrine underpinnings of sex differences in circadian timing systems. J Steroid Biochem Mol Biol 160:118-126.
Google Scholar |
Crossref |
Medline
Yoo, S-H, Kojima, S, Shimomura, K, Koike, N, Buhr, ED, Furukawa, T, Ko, CH, Gloston, G, Ayoub, C, Nohara, K, et al. (2017) Period2 3’-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proc Natl Acad Sci U S A 114:E8855-E8864.
Google Scholar |
Crossref |
Medline
Yoo, S-H, Yamazaki, S, Lowrey, PL, Shimomura, K, Ko, CH, Buhr, ED, Siepka, SM, Hong, H-K, Oh, WJ, Yoo, OJ, et al. (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339-5346.
Google Scholar |
Crossref |
Medline |
ISI
Zhao, H, Doyle, TC, Coquoz, O, Kalish, F, Rice, BW, Contag, CH (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10:41210.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)