Microglial TREM2 in amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of non-motor neuraxis emphasizes the contribution of glia cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.

This article is protected by copyright. All rights reserved

Comments (0)

No login
gif