1.
Ferlay, J, Colombet, M, Soerjomataram, I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941-1953. doi:
10.1002/ijc.31937. Google Scholar |
Crossref |
Medline2.
American Cancer Society .
https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html. Updated January 12, 2021. Accessed January 15, 2021.
Google Scholar3.
Li, C, Uribe, D, Daling, J. Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 2005;93:1046-1052. doi:
10.1038/sj.bjc.6602787. Google Scholar |
Crossref |
Medline |
ISI4.
Kittaneh, M, Montero, AJ, Gluck, S. Molecular profiling for breast cancer: a comprehensive review. Biomark Cancer. 2013;5:61-70. doi:
10.4137/BIC.S9455. Google Scholar |
SAGE Journals5.
Coates, AS, Winer, EP, Goldhirsch, A, et al. Tailoring therapies—improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26:1533-1546. doi:
10.1093/annonc/mdv221. Google Scholar |
Crossref |
Medline6.
Harbeck, N, Gnant, M. Breast cancer. Lancet. 2017;389:1134-1150. doi:
10.1016/S0140-6736(16)31891-8. Google Scholar |
Crossref |
Medline7.
Lewis Phillips, GD, Li, G, Dugger, DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280-9290. doi:
10.1158/0008-5472.CAN-08-1776. Google Scholar |
Crossref |
Medline |
ISI8.
Pernas, S, Tolaney, SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance [published online ahead of print March 19, 2019]. Ther Adv Med Oncol. doi:
10.1177/1758835919833519. Google Scholar |
Crossref9.
Zhao, S, Zuo, WJ, Shao, ZM, Jiang, YZ. Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med. 2020;8:499. doi:
10.21037/atm.2020.03.194. Google Scholar |
Crossref |
Medline10.
Litton, JK, Rugo, HS, Hurvitz, SA, et al. Talazoparib in patients with advanced breast cancer and germline BRCA mutation. N Engl J Med. 2018;379:753-763. doi:
10.1056/NEJMoa1802905. Google Scholar |
Crossref |
Medline11.
Diéras, V, Miles, D, Verma, S, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomized, open-label, phase 3 trial. Lancet Oncol. 2017;18:732-742. doi:
10.1016/S1470-2045(17)30312-1. Google Scholar |
Crossref |
Medline12.
Pembrolizumab is now also approved by the FDA for metastatic PDL1+ (CPS>10) TNBC .
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-pembrolizumab-locally-recurrent-unresectable-or-metastatic-triple. Accessed January 13, 2021.
Google Scholar13.
Morrow, ES, Roseweir, A, Edwards, J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Res. 2019;203:88-96. doi:
10.1016/j.trsl.2018.08.005. Google Scholar |
Crossref |
Medline14.
Nussbaumer, O, Koslowski, M. The emerging role of γδ T cells in cancer immunotherapy. Immuno-Oncol Technol. 2019;1:3-10. doi:
10.1016/j.iotech.2019.06.002. Google Scholar |
Crossref15.
Yardley, DA, Ismail-Khan, RR, Melichar, B, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013;31:2128-2135. doi:
10.1200/JCO.2012.43.7251. Google Scholar |
Crossref |
Medline |
ISI16.
Jiang, Z, Li, W, Hu, X, et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:806-815. doi:
10.1016/S1470-2045(19)30164-0. Google Scholar |
Crossref |
Medline17.
Sinn, HP, Kreipe, H. A brief overview of the WHO classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care (Basel). 2013;8:149-154. doi:
10.1159/000350774. Google Scholar |
Crossref |
Medline |
ISI18.
Makki, J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:23-31. doi:
10.4137/CPath.S31563. Google Scholar |
SAGE Journals19.
Li, CI, Anderson, BO, Daling, JR, et al. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA. 2003;289:1421-1424. doi:
10.1001/jama.289.11.1421. Google Scholar |
Crossref |
Medline |
ISI20.
Mueller, C, Haymond, A, Davis, JB, Williams, A, Espina, V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics. 2018;15:131-152. doi:
10.1080/14789450.2018.1421071. Google Scholar |
Crossref |
Medline21.
Curtis, C, Shah, SP, Chin, SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumors reveals novel subgroups. Nature. 2012;486:346-352. doi:
10.1038/nature10983. Google Scholar |
Crossref |
Medline |
ISI22.
Perou, CM, Sørlie, T, Eisen, MB, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747-752. doi:
10.1038/35021093. Google Scholar |
Crossref |
Medline |
ISI23.
Yersal, O, Barutca, S. Biological subtypes of breast cancer—prognostic and therapeutic implications. World J Clin Oncol. 2014;5:412-424. doi:
10.5306/wjco.v5.i3.412. Google Scholar |
Crossref |
Medline24.
Molecular subtypes of breast cancer .
https://www.breastcancer.org/symptoms/types/molecular-subtypes. Accessed October 20, 2020.
Google Scholar25.
Allison, KH, Hammond, MEH, Dowsett, M, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol. 2020;38:1346-1366. doi:
10.1200/JCO.19.02309. Google Scholar |
Crossref |
Medline26.
Deroo, BJ, Korach, KS. Estrogen receptors and human disease. J Clin Invest. 2006;116:561-570. doi:
10.1172/JCI27987. Google Scholar |
Crossref |
Medline |
ISI27.
Szostakowska, M, Trębińska-Stryjewska, A, Grzybowska, EA, Fabisiewicz, A. Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat. 2019;173:489-497. doi:
10.1007/s10549-018-5023-4. Google Scholar |
Crossref |
Medline28.
Arpino, G, Wiechmann, L, Osborne, CK, Schiff, R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008;29:217-233. doi:
10.1210/er.2006-0045. Google Scholar |
Crossref |
Medline |
ISI29.
Fan, W, Chang, J, Fu, P. Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies. Future Med Chem. 2015;7:1511-1519. doi:
10.4155/fmc.15.93. Google Scholar |
Crossref |
Medline30.
Eroglu, Z, Tagawa, T, Somlo, G. Human epidermal growth factor receptor family-targeted therapies in the treatment of HER2-overexpressing breast cancer. Oncologist. 2014;19:135-150. doi:
10.1634/theoncologist.2013-0283. Google Scholar |
Crossref |
Medline31.
Gerbin, CS. Activation of ERBB receptors. Nat Educ. 2010;3:35.
https://www.nature.com/scitable/topicpage/activation-of-erbb-receptors-14457210/. Accessed June 20, 2020.
Google Scholar32.
Slamon, DJ, Clark, GM, Wong, SG, Levin, WJ, Ullrich, A, McGuire, WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177-182. doi:
10.1126/science.3798106. Google Scholar |
Crossref |
Medline |
ISI33.
Ahn, S, Woo, JW, Lee, K, Park, SY. HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med. 2020;54:34-44. doi:
10.4132/jptm.2019.11.03. Google Scholar |
Crossref |
Medline34.
Xuhong, J-C, Qi, X-W, Zhang, Y, Jiang, J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res. 2019;9:2103-2119.
Google Scholar |
Medline35.
van Seijen, M, Lips, EH, Thompson, AM, et al. PRECISION team. Ductal carcinoma in situ: to treat or not to treat, that is the question. Br J Cancer. 2019;121:285-292. doi:
10.1038/s41416-019-0478-6. Google Scholar |
Crossref |
Medline36.
Latta, EK, Tjan, S, Parkes, RK, O’Malley, FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15:1318-1325. doi:
10.1097/01.MP.0000038462.62634.B1.
Google Scholar |
Crossref |
Medline |
ISI37.
Borgquist, S, Zhou, W, Jirström, K, et al. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer. 2015;15:468. doi:
10.1186/s12885-015-1479-3. Google Scholar |
Crossref |
Medline38.
Purdie, CA, Baker, L, Ashfield, A, et al. Increased mortality in HER2 positive, oestrogen receptor positive invasive breast cancer: a population-based study. Br J Cancer. 2010;103:475-481. doi:
10.1038/sj.bjc.6605799. Google Scholar |
Crossref |
Medline39.
Fragomeni, SM, Sciallis, A, Jeruss, JS. Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin N Am. 2018;27:95-120. doi:
10.1016/j.soc.2017.08.005. Google Scholar |
Crossref |
Medline40.
Gil Del Alcazar, CR, Huh, SJ, Ekram, MB, et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov. 2017;7:1098-1115. doi:
10.1158/2159-8290.CD-17-0222. Google Scholar |
Crossref |
Medline41.
Lesurf, R, Aure, MR, Mørk, HH, et al. Molecular features of subtype-specific progression from ductal carcinoma in situ to invasive breast cancer. Cell Rep. 2016;16:1166-1179. doi:
10.1016/j.celrep.2016.06.051. Google Scholar |
Crossref |
Medline42.
Prat, A, Cheang, MCU, Martín, M, et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal a breast cancer. J Clin Oncol. 2013;31:203-209. doi:
10.1200/JCO.2012.43.4134. Google Scholar |
Crossref |
Medline |
ISI43.
Chia, SK, Bramwell, VH, Tu, D, et al. A 50-gene intrinsic subtype classifier for prognosis and prediction of benefit from adjuvant tamoxifen. Clin Cancer Res. 2012;18:4465-4472. doi:
10.1158/1078-0432.CCR-12-0286. Google Scholar |
Crossref |
Medline |
ISI44.
Gnant, M, Filipits, M, Greil, R, et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the PAM50 risk of recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann Oncol. 2014;25:339-345. doi:
10.1093/annonc/mdt494. Google Scholar |
Crossref |
Medline |
ISI45.
Hennigs, A, Riedel, F, Gondos, A, et al. Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer. 2016;16:
Comments (0)