1.
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
Google Scholar |
Crossref |
Medline2.
Paplomata, E, O’Regan, R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol. 2014;6(4):154–166.
Google Scholar |
SAGE Journals |
ISI3.
Miller, KD, Nogueira, L, Mariotto, AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385.
Google Scholar |
Crossref |
Medline4.
Krishnamurti, U, Silverman, JF. HER2 in breast cancer: a review and update. Adv Anat Pathol. 2014;21(2):100–107.
Google Scholar |
Crossref |
Medline |
ISI5.
Tai, W, Mahato, R, Cheng, K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–275.
Google Scholar |
Crossref |
Medline6.
Gutierrez, C, Schiff, R. HER2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135(1):55–62.
Google Scholar |
Medline7.
Yarden, Y . Biology of HER2 and its importance in breast cancer. Oncology. 2001;61(Suppl 2):1–13.
Google Scholar |
Crossref |
Medline |
ISI8.
Ulaner, GA, Lyashchenko, SK, Riedl, C, et al. First-in-human human epidermal growth factor receptor 2–targeted imaging using 89Zr-Pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med. 2018;59(6):900–906.
Google Scholar |
Crossref |
Medline9.
Dehdashti, F, Wu, N, Bose, R, et al. Evaluation of [89 Zr] trastuzumab-PET/CT in differentiating HER2-positive from HER2-negative breast cancer. Breast Cancer Res Treat. 2018;169(3):523–530.
Google Scholar |
Crossref |
Medline10.
Massicano, AV, Marquez-Nostra, BV, Lapi, SE. Targeting HER2 in nuclear medicine for imaging and therapy. Mol Imaging. 2018;17:1536012117745386.
Google Scholar |
SAGE Journals11.
Massicano, AV, Lee, S, Crenshaw, BK, et al. Imaging of HER2 with [89Zr] pertuzumab in response to T-DM1 therapy. Cancer Biother Radio. 2019;34(4):209–217.
Google Scholar |
Medline12.
Fani, M, Maecke, H, Okarvi, S. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2(5):481–501.
Google Scholar |
Crossref |
Medline13.
Fosgerau, K, Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. 2015;20(1):122–128.
Google Scholar14.
Poeppel, TD, Binse, I, Petersenn, S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–1870.
Google Scholar |
Crossref |
Medline15.
Diderich, P, Heinis, C. Phage selection of bicyclic peptides binding Her2. Tetrahedron. 2014;70(42):7733–7739.
Google Scholar |
Crossref16.
Karasseva, NG, Glinsky, VV, Chen, NX, Komatireddy, R, Quinn, TP. Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem. 2002;21(4):287–296.
Google Scholar |
Crossref |
Medline17.
Kumar, SR, Quinn, TP, Deutscher, SL. Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor–expressing breast carcinomas. Clin Cancer Res. 2007;13(20):6070–6079.
Google Scholar |
Crossref |
Medline18.
Larimer, BM, Thomas, WD, Smith, GP, Deutscher, SL. Affinity maturation of an ERBB2-targeted SPECT imaging peptide by in vivo phage display. Mol Imaging Biol. 2014;16(4):449–458.
Google Scholar |
Crossref |
Medline19.
Cai, H, Singh, AN, Sun, X, Peng, F. Synthesis and characterization of HER2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging. J Fluoresc. 2015;25(1):113–117.
Google Scholar |
Crossref |
Medline20.
Kawamoto, M, Horibe, T, Kohno, M, Kawakami, K. HER2-targeted hybrid peptide that blocks HER2 tyrosine kinase disintegrates cancer cell membrane and inhibits tumor growth in vivo. Mol Cancer Ther. 2013;12(4):384–393.
Google Scholar |
Crossref |
Medline21.
Shadidi, M, Sioud, M. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J. 2003;17(2):256–258.
Google Scholar |
Crossref |
Medline22.
Sabahnoo, H, Noaparast, Z, Abedi, SM, Hosseinimehr, SJ. New small 99mTc-labeled peptides for HER2 receptor imaging. Eur J Med Chem. 2017;127:1012–1024.
Google Scholar |
Crossref |
Medline23.
Shahsavari, S, Shaghaghi, Z, Abedi, SM, Hosseinimehr, SJ. Evaluation of 99mTc-HYNIC-(ser) 3-LTVPWY peptide for glioblastoma imaging. Int J Radiat Biol. 2020;96(4):502–509.
Google Scholar |
Crossref |
Medline24.
Aligholikhamseh, N, Ahmadpour, S, Khodadust, F, Abedi, SM, Hosseinimehr SJ. 99mTc-HYNIC-(Ser) 3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. Radiochim Acta. 2018;106(7):601–609.
Google Scholar |
Crossref25.
Ardakani, JB, Amiri, FT, Khorramimoghaddam, A, Abbasi, A, Molavipordanjani, S, Hosseinimehr, SJ. Preclinical pharmacokinetic, biodistribution, radiation dosimetry, and toxicity studies of 99mTc-HYNIC-(Ser) 3-LTVPWY: a novel HER2-targeted peptide radiotracer. Regul Toxicol Pharmacol. 2020;112:104591.
Google Scholar |
Crossref |
Medline26.
Park, B-W, Zhang, H-T, Wu, C, et al. Rationally designed anti-HER2/neu peptide mimetic disables p185 HER2/neu tyrosine kinases in vitro and in vivo. Nat Biotechnol. 2000;18(2):194–198.
Google Scholar |
Crossref |
Medline27.
Guan, S-S, Wu, C-T, Chiu, C-Y, et al. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo. J Transl Med. 2018;16(1):168.
Google Scholar |
Crossref |
Medline28.
Li, L, Wu, Y, Wang, Z, et al. SPECT/CT imaging of the novel HER2-targeted peptide probe 99mTc-HYNIC-H6F in breast cancer mouse models. J Nucl Med. 2017;58(5):821–826.
Google Scholar |
Crossref |
Medline29.
Honarvar, H, Calce, E, Doti, N, et al. Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Sci Rep. 2018;8(1):1–12.
Google Scholar |
Crossref |
Medline30.
Geng, L, Wang, Z, Jia, X, et al. HER2 targeting peptides screening and applications in tumor imaging and drug delivery. Theranostics. 2016;6(8):1261–1273.
Google Scholar |
Crossref |
Medline31.
Okarvi, SM, AlJammaz, I. Development of the tumor-specific antigen-derived synthetic peptides as potential candidates for targeting breast and other possible human carcinomas. Molecules. 2019;24(17):3142.
Google Scholar |
Crossref32.
Li, Z, Zhao, R, Wu, X, et al. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J. 2005;19(14):1978–1985.
Google Scholar |
Crossref |
Medline33.
Rahmanian, N, Hosseinimehr, SJ, Khalaj, A, Noaparast, Z, Abedi, SM, Sabzevari O. 99 m Tc-radiolabeled GE11-modified peptide for ovarian tumor targeting. DARU. 2017;25(1):13.
Google Scholar |
Crossref |
Medline34.
Rahmanian, N, Hosseinimehr, SJ, Khalaj, A, Noaparast, Z, Abedi, SM, Sabzevari, O. 99 m Tc labeled HYNIC-EDDA/tricine-GE11 peptide as a successful tumor targeting agent. Med Chem Res. 2018;27(3):890–902.
Google Scholar |
Crossref
Comments (0)