1.
Miyatake, S, Nonoguchi, N, Furuse, M, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo). 2015;55(1):50–59. doi:10.2176/nmc.ra.2014-0188
Google Scholar |
Crossref2.
Vellayappan, B, Tan, CL, Yong, C, et al. Diagnosis and management of radiation necrosis in patients with brain metastases. Front Oncol. 2018;8:395. doi:10.3389/fonc.2018.00395
Google Scholar |
Crossref |
Medline3.
Gotz, I, Grosu, AL. [(18)F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Front Oncol. 2013;3:104. doi:10.3389/fonc.2013.00104
Google Scholar |
Crossref |
Medline4.
Sogani, SK, Jena, A, Taneja, S, et al. Potential for differentiation of glioma recurrence from radionecrosis using integrated (18)F-fluoroethyl-L-tyrosine (FET) positron emission tomography/magnetic resonance imaging: a prospective evaluation. Neurol India. 2017;65(2):293–301. doi:10.4103/neuroindia.NI_101_16
Google Scholar |
Crossref |
Medline5.
Piroth, MD, Liebenstund, S, Galldiks, N, et al. Monitoring of radiochemotherapy in patients with glioblastoma using O-(2-(1)(8)Fluoroethyl)-L-tyrosine positron emission tomography: is dynamic imaging helpful? Mol Imaging. 2013;12(6):388–395.
Google Scholar |
SAGE Journals6.
Lohmann, P, Kocher, M, Ceccon, G, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin. 2018;20:537–542. doi:10.1016/j.nicl.2018.08.024
Google Scholar |
Crossref |
Medline7.
Zikou, A, Sioka, C, Alexiou, GA, et al. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging. 2018;2018:6828396. /01/11. doi:10.1155/2018/6828396
Google Scholar |
Crossref |
Medline8.
Glaudemans, AW, Enting, RH, Heesters, MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–635. doi:10.1007/s00259-012-2295-5
Google Scholar |
Crossref |
Medline |
ISI9.
Yomo, S, Oguchi, K. Prospective study of (11)C-methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC Cancer. 2017;17(1):713. doi:10.1186/s12885-017-3702-x
Google Scholar |
Crossref |
Medline10.
Garcia, JR, Cozar, M, Baquero, M, et al. The value of (11)C-methionine PET in the early differentiation between tumour recurrence and radionecrosis in patients treated for a high-grade glioma and indeterminate MRI. Rev Esp Med Nucl Imagen Mol. 2017;36(2):85–90. doi:10.1016/j.remn.2016.06.002
Google Scholar |
Crossref |
Medline11.
Deng, SM, Zhang, B, Wu, YW, et al. Detection of glioma recurrence by (1)(1)C-methionine positron emission tomography and dynamic susceptibility contrast-enhanced magnetic resonance imaging: a meta-analysis. Nucl Med Commun. 2013;34(8):758–766. doi:10.1097/MNM.0b013e328361f598
Google Scholar |
Crossref |
Medline |
ISI12.
Nihashi, T, Dahabreh, IJ, Terasawa, T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–950 , S941-911. doi:10.3174/ajnr.A3324
Google Scholar |
Crossref |
Medline |
ISI13.
Law, I, Albert, NL, Arbizu, J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–557. doi:10.1007/s00259-018-4207-9
Google Scholar |
Crossref |
Medline14.
Werry, EL, Bright, FM, Piguet, O, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci. 2019;20(13):3161. doi:10.3390/ijms20133161
Google Scholar |
Crossref15.
Ruksha, T, Aksenenko, M, Papadopoulos, V. Role of translocator protein in melanoma growth and progression. Arch Dermatol Res. 2012;304(10):839–845. doi:10.1007/s00403-012-1294-5
Google Scholar |
Crossref |
Medline16.
Han, Z, Slack, RS, Li, W, Papadopoulos, V. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression. J Recept Signal Transduct Res. 2003;23(2-3):225–238. doi:10.1081/RRS-120025210
Google Scholar |
Crossref |
Medline17.
Lumniczky, K, Szatmari, T, Safrany, G. Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol. 2017;8:517. doi:10.3389/fimmu.2017.00517
Google Scholar |
Crossref |
Medline18.
Cuccurullo, V, Di Stasio, GD, Cascini, GL, et al. The molecular effects of ionizing radiations on brain cells: radiation necrosis vs. tumor recurrence. Diagnostics (Basel). 2019;9(4):127. doi:10.3390/diagnostics9040127
Google Scholar |
Crossref19.
Chen, MK, Guilarte, TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118(1):1–17. doi:10.1016/j.pharmthera.2007.12.004
Google Scholar |
Crossref |
Medline |
ISI20.
Alomari, A, Rauch, PJ, Orsaria, M, et al. Radiologic and histologic consequences of radiosurgery for brain tumors. J Neurooncol. 2014;117(1):33–42. doi:10.1007/s11060-014-1359-8
Google Scholar |
Crossref |
Medline21.
Kreisl, WC, Fujita, M, Fujimura, Y, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. NeuroImage. 2010;49(4):2924–2932. doi:10.1016/j.neuroimage.2009.11.056
Google Scholar |
Crossref |
Medline22.
Deloar, HM, Fujiwara, T, Nakamura, T, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25(6):629–633.
Google Scholar |
Crossref |
Medline23.
Brown, AK, Fujita, M, Fujimura, Y, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007;48(12):2072–2079. doi:10.2967/jnumed.107.044842
Google Scholar |
Crossref |
Medline24.
Jin, X, Mulnix, T, Gallezot, JD, Carson, RE. Evaluation of motion correction methods in human brain PET imaging—a simulation study based on human motion data. Med Phys. 2013;40(10):10250 3. doi:10.1118/1.4819820
Google Scholar |
Crossref25.
Carson, RE, Barker, W, Liow, J-S, et al. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction of the HRRT. IEEE Nucl Sci Symp Conf Rec. 2003; M16–6.
Google Scholar26.
Patlak, CS, Blasberg, RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–590. doi:10.1038/jcbfm.1985.87
Google Scholar |
SAGE Journals |
ISI27.
Patlak, CS, Blasberg, RG, Fenstermacher, JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7. doi: 10.1038/jcbfm.1983.1
Google Scholar |
SAGE Journals |
ISI28.
Ichise, M, Toyama, H, Innis, RB, Carson, RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22(10):1271–1281. doi:10.1097/00004647-200210000-00015
Google Scholar |
SAGE Journals |
ISI29.
Ichise, M, Liow, J-S, Lu, J-Q, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23(9):1096–1112. doi:10.1097/01.WCB.0000085441.37552.CA
Google Scholar |
SAGE Journals |
ISI30.
Camp, RL, Chung, GG, Rimm, DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med. 2002;8(11):1323–1327. doi:10.1038/nm791
Google Scholar |
Crossref |
Medline |
ISI31.
Owen, DR, Yeo, AJ, Gunn, RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5. doi:10.1038/jcbfm.2011.147
Google Scholar |
SAGE Journals |
ISI32.
Bhoola, NH, Mbita, Z, Hull, R, Dlamini, Z. Translocator protein (TSPO) as a potential biomarker in human cancers. Int J Mol Sci. 2018;19(8):2176. doi:10.3390/ijms19082176
Google Scholar |
Crossref33.
Donabedian, PL, Kossatz, S, Engelbach, JA, et al. Discriminating radiation injury from recurrent tumor with [(18)F]PARPi and amino acid PET in mouse models. EJNMMI Res. 2018;8(1):59. doi:10.1186/s13550-018-0399-z
Google Scholar |
Crossref |
Medline34.
Furumoto, S, Shinbo, R, Iwata, R, et al. In vitro and in vivo characterization of 2-deoxy-2-18F-fluoro-D-mannose as a tumor-imaging agent for PET. J Nucl Med. 2013;54(8):1354–1361. doi:10.2967/jnumed.112.113571
Google Scholar |
Crossref |
Medline35.
Tjuvajev, JG, Macapinlac, HA, Daghighian, F, et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. J Nucl Med. 1994;35(9):1407–1417.
Google Scholar |
Medline36.
Liu, Y, Carpenter, AB, Pirozzi, CJ, et al. Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology. 2019;30(27):275101. doi:10.1088/1361-6528/ab0e9c
Google Scholar |
Crossref |
Medline37.
Weber, W, Bartenstein, P, Gross, MW, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38(5):802–808.
Google Scholar |
Medline
Comments (0)