1.
Pappachan, JM, Buch, HN. Endocrine hypertension: a practical approach. Adv Exp Med Biol 2017; 956: 215–237.
Google Scholar |
Crossref |
Medline2.
Käyser, SC, Dekkers, T, Groenewoud, HJ, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: a systematic review and meta-regression analysis. J Clin Endocrinol Metab 2016; 101(7): 2826–2835.
Google Scholar |
Crossref |
Medline3.
Young, WF . Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J Intern Med 2019; 285(2): 126–148.
Google Scholar |
Crossref |
Medline4.
Monticone, S, D’Ascenzo, F, Moretti, C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018; 6(1): 41–50.
Google Scholar |
Crossref |
Medline5.
Mulatero, P, Monticone, S, Bertello, C, et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J Clin Endocrinol Metab 2013; 98(12): 4826–4833.
Google Scholar |
Crossref |
Medline6.
Luther, JM . Aldosterone in vascular and metabolic dysfunction. Curr Opin Nephrol Hypertens 2016; 25(1): 16–21.
Google Scholar |
Crossref |
Medline7.
Neves, MF, Cunha, AR, Cunha, MR, et al. The role of renin-angiotensin-aldosterone system and its new components in arterial stiffness and vascular aging. High Blood Press Cardiovasc Prev 2018; 25(2): 137–145.
Google Scholar |
Crossref |
Medline8.
Gimbrone, MA, García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620–636.
Google Scholar |
Crossref |
Medline |
ISI9.
Higashi, Y . Assessment of endothelial function. History, methodological aspects, and clinical perspectives. Int Heart J 2015; 56(2): 125–134.
Google Scholar |
Crossref |
Medline10.
Hamburg, NM, Benjamin, EJ. Assessment of endothelial function using digital pulse amplitude tonometry. Trends Cardiovasc Med 2009; 19(1): 6–11.
Google Scholar |
Crossref |
Medline11.
Kishimoto, S, Matsumoto, T, Oki, K, et al. Microvascular endothelial function is impaired in patients with idiopathic hyperaldosteronism. Hypertens Res 2018; 41(11): 932–938.
Google Scholar |
Crossref |
Medline12.
Chang, YY, Chen, A, Chen, YH, et al. Hypokalemia correlated with arterial stiffness but not microvascular endothelial function in patients with primary aldosteronism. J Renin Angiotensin Aldosterone Syst 2015; 16(2): 353–359.
Google Scholar |
SAGE Journals |
ISI13.
Kato, T, Node, K. Microvascular and macrovascular endothelial function in two different types of primary aldosteronism. Hypertens Res. Epub ahead of print 6 December 2018. DOI:
10.1038/s41440-018-0153-y. Google Scholar |
Crossref14.
Matrozova, J, Vasilev, V, Vandeva, S, et al. Asymmetric Dimethylarginin (ADMA) as a marker of endothelial dysfunction in primary aldosteronism. Int J Endocrinol Metab 2016; 14(4): e30324.
Google Scholar |
Crossref |
Medline15.
Petrák, O, Widimský, J, Zelinka, T, et al. Biochemical markers of endothelial dysfunction in patients with endocrine and essential hypertension. Physiol Res 2006; 55(6): 597–602.
Google Scholar |
Medline16.
Funder, JW, Carey, RM, Mantero, F, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101(5): 1889–1916.
Google Scholar |
Crossref |
Medline17.
Bonetti, PO, Pumper, GM, Higano, ST, et al. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 2004; 44(11): 2137–2141.
Google Scholar |
Crossref |
Medline |
ISI18.
Matsuzawa, Y, Kwon, TG, Lennon, RJ, et al. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. J Am Heart Assoc 2015; 4(11): e002270.
Google Scholar |
Crossref |
Medline19.
Chrissobolis, S . Vascular consequences of aldosterone excess and mineralocorticoid receptor antagonism. Curr Hypertens Rev 2017; 13(1): 46–56.
Google Scholar |
Crossref |
Medline20.
Petramala, L, Pignatelli, P, Carnevale, R, et al. Oxidative stress in patients affected by primary aldosteronism. J Hypertens 2014; 32(10): 2022–2209; discussion 2029.
Google Scholar |
Crossref |
Medline21.
Chou, CH, Chen, YH, Hung, CS, et al. Aldosterone impairs vascular smooth muscle function: from clinical to bench research. J Clin Endocrinol Metab 2015; 100(11): 4339–4347.
Google Scholar |
Crossref |
Medline22.
Tsuchiya, K, Yoshimoto, T, Hirata, Y. Endothelial dysfunction is related to aldosterone excess and raised blood pressure. Endocr J 2009; 56(4): 553–559.
Google Scholar |
Crossref23.
Matsumoto, T, Oki, K, Kajikawa, M, et al. Effect of aldosterone-producing adenoma on endothelial function and Rho-associated kinase activity in patients with primary aldosteronism. Hypertension 2015; 65(4): 841–848.
Google Scholar |
Crossref |
Medline24.
Hamburg, NM, Palmisano, J, Larson, MG, et al. Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension 2011; 57(3): 390–396.
Google Scholar |
Crossref |
Medline25.
Ogawa, T, Kimoto, M, Sasaoka, K. Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats. Biochem Biophys Res Commun 1987; 148(2): 671–677.
Google Scholar |
Crossref |
Medline26.
Ogawa, T, Kimoto, M, Watanabe, H, et al. Metabolism of NG,NG-and NG,N′G-dimethylarginine in rats. Arch Biochem Biophys 1987; 252(2): 526–537.
Google Scholar |
Crossref |
Medline27.
Aldámiz-Echevarría, L, Andrade, F. Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int J Mol Sci 2012; 13(9): 11288–11311.
Google Scholar |
Crossref |
Medline28.
Willeit, P, Freitag, DF, Laukkanen, JA, et al. Asymmetric dimethylarginine and cardiovascular risk: systematic review and meta-analysis of 22 prospective studies. J Am Heart Assoc 2015; 4(6): e001833.
Google Scholar |
Crossref |
Medline29.
Gkaliagkousi, E, Gavriilaki, E, Triantafyllou, A, et al. Asymmetric dimethylarginine levels are associated with augmentation index across naïve untreated patients with different hypertension phenotypes. J Clin Hypertens (Greenwich) 2018; 20(4): 680–685.
Google Scholar |
Crossref |
Medline30.
Perticone, F, Sciacqua, A, Maio, R, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 2005l; 46(3): 518–523.
Google Scholar |
Crossref |
Medline31.
Telen, MJ . Cellular adhesion and the endothelium: E-selectin, L-selectin, and pan-selectin inhibitors. Hematol Oncol Clin North Am 2014; 28(2): 341–354.
Google Scholar |
Crossref |
Medline32.
Shan, H, Zhang, M, Zhang, M, et al. Association of rs5368 and rs3917406 polymorphisms in E-selectin gene with premature coronary artery disease in Chinese Han population. Int J Clin Exp Med 2015; 8(3): 4387–4392.
Google Scholar |
Medline33.
Vargas-Alarcon, G, Perez-Mendez, O, Herrera-Maya, G, et al. The rs1805193, rs5361, and rs5355 single nucleotide polymorphisms in the E-selectin gene (SEL-E) are associated with subclinical atherosclerosis: the Genetics of Atherosclerotic Disease (GEA) Mexican study. Immunobiology 2019; 224(1): 10–14.
Google Scholar |
Crossref |
Medline34.
Chong, AY, Lip, GY, Freestone, B, et al. Increased circulating endothelial cells in acute heart failure: comparison with von Willebrand factor and soluble E-selectin. Eur J Heart Fail 2006; 8(2): 167–172.
Google Scholar |
Crossref |
Medline35.
Lu, HH, Sheng, ZQ, Wang, Y, et al. Levels of soluble adhesion molecules in patients with various clinical presentations of coronary atherosclerosis. Chin Med J (Engl) 2010; 123(21): 3123–3126.
Google Scholar |
Medline36.
Palomo, I, Marín, P, Alarcón, M, et al. Patients with essential hypertension present higher levels of sE-selectin and sVCAM-1 than normotensive volunteers. Clin Exp Hypertens 2003; 25(8): 517–523.
Google Scholar |
Crossref |
Medline37.
Song, Y, Huang, YT, Song, Y, et al. Birthweight, mediating biomarkers and the development of type 2 diabetes later in life: a prospective study of multi-ethnic women. Diabetologia 2015; 58(6): 1220–1230.
Google Scholar |
Crossref |
Medline38.
Rabieian, R, Boshtam, M, Zareei, M, et al. Plasminogen activator inhibitor type-1 as a regulator of fibrosis. J Cell Biochem 2018; 119(1): 17–27.
Google Scholar |
Crossref |
Medline39.
Jiang, Q, Liu, H, Wang, S, et al. Circadian locomotor output cycles kaput accelerates atherosclerotic plaque formation by upregulating plasminogen activator inhibitor-1 expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50(9): 869–879.
Google Scholar |
Crossref |
Medline40.
Chen, R, Yan, J, Liu, P, et al. Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: the roles of PAI-1 and obesity on stroke. Metab Brain Dis 2017; 32(3): 667–673.
Google Scholar |
Crossref |
Medline41.
Nikolopoulos, GK, Bagos, PG, Tsangaris, I, et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis. Clin Chem Lab Med 2014; 52(7): 937–950.
Google Scholar |
Crossref |
Medline42.
Jung, RG, Motazedian, P, Ramirez, FD, et al. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb J 2018; 16: 12.
Google Scholar |
Crossref |
Medline43.
De Taeye, B, Smith, LH, Vaughan, DE. Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol 2005; 5(2): 149–154.
Google Scholar |
Crossref |
Medline44.
Chun, TY, Pratt, JH. Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes. Mol Cell Endocrinol 2005; 239(1–2): 55–61.
Google Scholar |
Crossref |
Medline |
ISI
Comments (0)