LncRNA MIAT Promotes Allergic Inflammation and Symptoms by Targeting MiR-10b-5p in Allergic Rhinitis Mice

1. Xiao, L, Jiang, L, Hu, QLi Y. MicroRNA-133b ameliorates allergic inflammation and symptom in murine model of allergic rhinitis by targeting Nlrp3. Cell Physiol Biochem. 2017; 42(3):901–912.
Google Scholar | Crossref | Medline2. Liu, Y, Zhu, X, Zhang, H. Effects of chemokine receptor 3 gene silencing by RNA interference on eosinophils. Exp Therapeut Med. 2017; 13(1):215–221.
Google Scholar | Crossref | Medline3. Gonzalez, M, Dona, I, Palomares, F, et al. Dermatophagoides pteronyssinus immunotherapy changes the T-regulatory cell activity. Sci Rep. 2017; 7(1):11949.
Google Scholar | Crossref | Medline4. Gu, ZW, Wang, YX, Cao, ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the treg response in a murine model. Oncotarget. 2017; 8(9):14314–14324.
Google Scholar | Crossref | Medline5. Verheggen, BG, Westerhout, KY, Schreder, CH, et al. Health economic comparison of SLIT allergen and SCIT allergoid immunotherapy in patients with seasonal grass-allergic rhinoconjunctivitis in Germany. Clin Transl Allergy. 2015; 5:1.
Google Scholar | Crossref | Medline6. Steelant, B, Farre, R, Wawrzyniak, P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 2016; 137(4):1043–1053.e1045.
Google Scholar | Crossref | Medline7. Gu, ZW, Wang, YX, Cao, ZW. Neutralization of interleukin-17 suppresses allergic rhinitis symptoms by downregulating Th2 and Th17 responses and upregulating the treg response. Oncotarget. 2017; 8(14):22361–22369.
Google Scholar | Crossref | Medline8. Albano, GD, Di Sano, C, Bonanno, A, et al. Th17 immunity in children with allergic asthma and rhinitis: a pharmacological approach. PLoS One. 2013; 8(4):e58892.
Google Scholar | Crossref | Medline9. Sun, K, Lai, EC. Adult-specific functions of animal microRNAs. Nat Rev Genet. 2013; 14(8):535–548.
Google Scholar | Crossref | Medline10. Guo, J, Li, J, Zhao, J, et al. MiRNA-29c regulates the expression of inflammatory cytokines in diabetic nephropathy by targeting tristetraprolin. Sci Rep. 2017; 7(1):2314–2305.
Google Scholar11. Specjalski, K, Jassem, E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz). 2019; 67(4):213–223.
Google Scholar | Crossref | Medline12. Chen, Z, Deng, Y, Li, F, et al. MicroRNA-466a-3p attenuates allergic nasal inflammation in mice by targeting GATA3. Clin Exp Immunol. 2019; 197(3):366–375.
Google Scholar | Medline13. Wang, L, Liu, X, Song, X, et al. MiR-202-5p promotes M2 polarization in allergic rhinitis by targeting MATN2. Int Arch Allergy Immunol. 2019; 178(2):119–127.
Google Scholar | Crossref | Medline14. Liu, HC, Liao, Y, Liu, CQ. miR-487b mitigates allergic rhinitis through inhibition of the IL-33/ST2 signaling pathway. Eur Rev Med Pharmacol Sci. 2018; 22(23):8076–8083.
Google Scholar | Medline15. Chen, L, Al-Mossawi, MH, Ridley, A, et al. miR-10b-5p is a novel Th17 regulator present in Th17 cells from ankylosing spondylitis. Ann Rheum Dis. 2017; 76(3):620–625.
Google Scholar | Crossref | Medline16. Rager, JE, Moeller, BC, Miller, SK, et al. Formaldehyde-associated changes in microRNAs: tissue and temporal specificity in the rat nose, white blood cells, and bone marrow. Toxicol Sci. 2014; 138(1):36–46.
Google Scholar | Crossref | Medline17. Liu, C, Cao, B, Liu, N, et al. Increased expression of long noncoding RNA RP11-62F24.2 in gastric cancer and its clinical significance. Clin Lab. 2017; 63:1475–1479.
Google Scholar | Crossref | Medline18. Qian, X, Shi, S, Zhang, G. Long non-coding RNA antisense non-coding RNA in the INK4 locus expression correlates with increased disease risk, severity, and inflammation of allergic rhinitis. Med (Baltimore). 2019; 98(20):e15247.
Google Scholar | Crossref | Medline19. Zhu, X, Wang, X, Wang, Y, et al. Exosomal long non-coding RNA GAS5 suppresses Th1 differentiation and promotes Th2 differentiation via downregulating EZH2 and T-bet in allergic rhinitis. Mol Immunol. 2020; 118:30–39.
Google Scholar | Crossref | Medline20. Ye, ZM, Yang, S, Xia, YP, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019; 10(2):138–102.
Google Scholar | Crossref21. Liu, Z, Wang, H, Cai, H, et al. Long non-coding RNA MIAT promotes growth and metastasis of colorectal cancer cells through regulation of miR-132/derlin-1 pathway. Cancer Cell Int. 2018; 18:1–10.
Google Scholar | Crossref | Medline22. Li, Q, Pang, L, Yang, W, et al. Long Non-Coding RNA of myocardial infarction associated transcript (LncRNA-MIAT) promotes diabetic retinopathy by upregulating transforming growth factor-beta1 (TGF-beta1) signaling. Med Sci Monit. 2018; 24:9497–9503.
Google Scholar | Crossref | Medline23. Li, CH, Chen, Y. Insight into the role of long noncoding RNA in cancer development and progression. Int Rev Cell Mol Biol. 2016; 326:33–65.
Google Scholar | Crossref | Medline24. Bae, JS, Kim, JH, Kim, EH, et al. The role of IL-17 in a lipopolysaccharide-induced rhinitis model. Allergy Asthma Immunol Res. 2017; 9(2):169–176.
Google Scholar | Crossref | Medline25. Huang, Z, Zhuang, X, Xie, C, et al. Exogenous hydrogen sulfide attenuates high Glucose-Induced cardiotoxicity by inhibiting NLRP3 inflammasome activation by suppressing TLR4/NF-kappaB pathway in H9c2 cells. Cell Physiol Biochem. 2016; 40(6):1578–1590.
Google Scholar | Crossref | Medline26. Kou, W, Li, X, Yao, H, et al. Hypoxia disrupts aryl hydrocarbon receptor signaling and the Th17 response in allergic rhinitis patients. Mol Immunol. 2018; 101:364–369.
Google Scholar | Crossref | Medline27. Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4):402–408.
Google Scholar | Crossref | Medline28. McAleer, JP, Fan, J, Roar, B, et al. Cytokine regulation in human CD4 T cells by the aryl hydrocarbon receptor and Gq-coupled receptors. Sci Rep. 2018; 8(1):10954–10907.
Google Scholar | Crossref | Medline29. Kirmaz, C, Bayrak, P, Yilmaz, O, et al. Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. Eur Cytokine Netw. 2005; 16(2):128–134.
Google Scholar | Medline30. Guo, Y, Zynat, J, Xing, S, et al. Immunological changes of T helper cells in flow cytometer-sorted CD4(+) T cells from patients with Hashimoto’s thyroiditis. Exp Ther Med. 2018; 15:3596–3602.
Google Scholar | Medline31. Rosenwasser, LJ. Mechanisms of IgE inflammation. Curr Allergy Asthma Rep. 2011; 11(2):178–183.
Google Scholar | Crossref | Medline32. Broide, DH. Allergic rhinitis: pathophysiology. Allergy Asthma Proc. 2010; 31(5):370–374.
Google Scholar | Crossref | Medline33. Fuentes-Beltran, A, Montes-Vizuet, R, Valencia-Maqueda, E, et al. Chemokine CC-ligand 5 production and eosinophil activation into the upper airways of aspirin-sensitive patients. Clin Exp Allergy. 2009; 39(4):491–499.
Google Scholar | Crossref | Medline34. Fukui, N, Honda, K, Ito, E, et al. Peroxisome proliferator-activated receptor gamma negatively regulates allergic rhinitis in mice. Allergol Int. 2009; 58(2):247–253.
Google Scholar | Crossref | Medline35. Samandari, N, Mirza, AH, Kaur, S, et al. Influence of disease duration on circulating levels of miRNAs in children and adolescents with new onset type 1 diabetes. Noncoding RNA. 2018; 4:35.
Google Scholar36. Woolsey, C, Jankeel, A, Matassov, D, et al. Immune correlates of postexposure vaccine protection against marburg virus. Sci Rep. 2020; 10(1):3071.
Google Scholar | Crossref | Medline37. Reyes, NJ, Mayhew, E, Chen, PW, et al. NKT cells are necessary for maximal expression of allergic conjunctivitis. Int Immunol. 2010; 22(8):627–636.
Google Scholar | Crossref | Medline38. Abdelmegid, AM, Abdo, FK, Ahmed, FE, et al. Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci Rep. 2019; 9(1):10176–10107.
Google Scholar | Crossref | Medline39. Zhou, X, Zhang, W, Jin, M, et al. lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis. 2017; 8(7):e2929.
Google Scholar | Crossref | Medline40. Huang, X, Gao, Y, Qin, J, et al. lncRNA MIAT promotes proliferation and invasion of HCC cells via sponging miR-214. Am J Physiol Gastrointest Liver Physiol. 2018; 314(5):G559–G565.
Google Scholar | Crossref | Medline

Comments (0)

No login
gif