Prognostic Significance of Wnt1, Wnt2, E-Cadherin, and β-catenin Expression in Operable Non-small Cell Lung Cancer

1. De Angelis, R, Sant, M, Coleman, MP, Francisci, S, Baili, P, Pierannunzio, D, Trama, A, Visser, Ol. Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE—5-a population-based study. Lancet Oncol. 2014;15(1):23–34.
Google Scholar | Crossref | Medline2. Schiller, JH, Harrington, D, Belani, CP, Langer, C, Sandler, A, Krook, J, Zhu, J, Johnson, D. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–8.
Google Scholar | Crossref3. Nusse, R, Varmus, HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99–109.
Google Scholar | Crossref | Medline4. Nüsslein-Volhard, C, Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801.
Google Scholar | Crossref | Medline5. Hart, MJ, de los Santos, R, Albert, IN, Rubinfeld, B, Polakis, P. Downregulation of beta-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8(10):573–81.
Google Scholar | Crossref6. Kishida, S, Yamamoto, H, Ikeda, S, Kishida, M, Sakamoto, I, Koyama, S, Kikuchi, A. Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. J Biol Chem. 1998;273(18):10823–6.
Google Scholar | Crossref7. Aberle, H, Bauer, A, Stappert, J, Kispert, A, Kemler, R. Beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J. 1997;16(13):3797–804.
Google Scholar | Crossref | Medline8. Liu, C, Kato, Y, Zhang, Z, Do, VM, Yankner, BA, He, X. Beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA. 1999;96(11):6273–8.
Google Scholar | Crossref9. Widelitz, R . Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors. 2005;23(2):111–6.
Google Scholar | Crossref10. Eastman, Q, Grosschedl, R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol. 1999;11(2):233–40.
Google Scholar | Crossref11. Hendriksen, J, Fagotto, F, van der Velde, H, van Schie, M, Noordermeer, J, Fornerod, M. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1. J Cell Biol. 2005;171(5):785–97.
Google Scholar | Crossref12. Pongracz, JE, Stockley, RA. Wnt signalling in lung development and diseases. Respir Res. 2006;7(1):15.
Google Scholar | Crossref13. Kramps, T, Peter, O, Brunner, E, Nellen, D, Froesch, B, Chatterjee, S, Murone, M, Zullig, S, Basler, K. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell. 2002;109(1):47–60.
Google Scholar | Crossref | Medline14. Parker, DS, Jemison, J, Cadigan, KM. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development. 2002;129(11):2565–76.
Google Scholar | Crossref15. Townsley, FM, Cliffe, A, Bienz, M. Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol. 2004;6(7):626–33.
Google Scholar | Crossref16. Reya, T, Duncan, AW, Ailles, L, Domen, J, Scherer, DC, Willert, K, Hintz, L, Nusse, R, Weissman, I. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.
Google Scholar | Crossref17. Sato, N, Meijer, L, Skaltsounis, L, Greengard, P, Brivanlou, AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10(1):55–63.
Google Scholar | Crossref | Medline18. Chen, S, Guttridge, DC, You, Z, Zhang, Z, Fribley, A, Mayo, MW, Kitajewski, J, Wang, CY. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 2001;152(1):87–96.
Google Scholar | Crossref19. Kononen, J, Bubendorf, L, Kallioniemi, A, Bärlund, M, Schraml, P, Leighton, S, Torhorst, J, Mihatsch, MJ, Sauter, G, Kallioniemi, OP. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med. 1998;4(7):844–7.
Google Scholar | Crossref20. Detre, S, Saclani Jotti, G, Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol. 1995;48(9):876–8.
Google Scholar | Crossref | Medline21. Nakashima, T, Liu, D, Nakano, J, Ishikawa, S, Yokomise, H, Ueno, M, Kadota, K, Huang, CL. Wnt1 overexpression associated with tumor proliferation and a poor prognosis in non-small cell lung cancer patients. Oncol Rep. 2008;19(1):203–9.
Google Scholar22. Huang, CL, Liu, D, Ishikawa, S, Nakashima, T, Nakashima, N, Yokomise, H, Kadota, K, Ueno, M. Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer. 2008;44(17):2680–8.
Google Scholar | Crossref23. Xu, X, Sun, PL, Li, JZ, Jheon, S, Lee, CT, Chung, JH. Aberrant Wnt1/β-catenin expression is an independent poor prognostic marker of non-small cell lung cancer after surgery. J Thorac Oncol. 2011;6(4):716–24.
Google Scholar | Crossref24. Huang, C, Ma, R, Xu, Y, Li, N, Li, Z, Yue, J, Li, H, Guo, Y, Qi, D. Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. Am J Cancer Res. 2015;5(3):1032–46.
Google Scholar25. Choi, YS, Shim, YM, Kim, SH, Son, DS, Lee, HS, Kim, GY, Ham, J, Kim, J. Prognostic significance of E-cadherin and beta-catenin in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;24(3):441–9.
Google Scholar26. Miao, Y, Li, AL, Wang, L, Fan, CF, Zhang, XP, Xu, HT, Han, Y, Liu, Y, Wang, E. Expression of p130cas, E-cadherin and β-catenin and their correlation with clinicopathological parameters in non-small cell lung cancer: p130cas over-expression predicts poor prognosis. Folia Histochem Cytobiol. 2012;50(3):392–7.
Google Scholar | Crossref27. Yan, H, Jiang, Y, Zhang, H, Chen, X, Ma, Y, Wang, C. [Expression of E-cadherin and β-catenin and their significance in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi. 2005;8(3):202–6.
Google Scholar28. Lee, YC, Wu, CT, Chen, CS, Chang, YL. E-cadherin expression in surgically-resected non-small cell lung cancers—a clinicopathological study. Thorac Cardiovasc Surg. 2000;48(5):294–9.
Google Scholar | Crossref29. Zhang, H, Liu, J, Yue, D, Gao, L, Wang, D, Wang, C. Clinical significance of E-cadherin, β-catenin, vimentin and S100A4 expression in completely resected squamous cell lung carcinoma. J Clin Pathol. 2013;66(11): 937–45.
Google Scholar | Crossref30. Kase, S, Sugio, K, Yamazaki, K, Okamoto, T, Yano, T, Sugimachi, K. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res. 2000;6(12):4789–96.
Google Scholar31. Yang, YL, Chen, MW, Xian, L. Prognostic and clinicopathological significance of downregulated E-cadherin expression in patients with non-small cell lung cancer (NSCLC): a meta-analysis. PLoS ONE. 2014;9(6):e99763.
Google Scholar | Crossref32. Lin, Q, Li, M, Shen, ZY, Xiong, LW, Pan, XF, Gen, JF, Bao, GL, Sha, HF, Feng, JX, Ji, CY, Chen, M. Prognostic impact of vascular endothelial growth factor-A and E-cadherin expression in completely resected pathologic stage I non-small cell lung cancer. Jpn J Clin Oncol. 2010;40(7):670–6.
Google Scholar | Crossref33. Kim, H, Yoo, SB, Sun, P, Jin, Y, Jheon, S, Lee, CT, Chung, JH. Alteration of the E-cadherin/β-catenin complex is an independent poor prognostic factor in lung adenocarcinoma. Korean J Pathol. 2013;47(1):44–51.
Google Scholar | Crossref34. Qiu, ZX, Zhao, S, Li, L, Li, WM. Prognostic value and clinicopathological significance of epithelial cadherin expression in non-small cell lung cancer. Thorac Cancer. 2015;6(5):589–96.
Google Scholar | Crossref35. Myong, NH . Reduced expression of E-cadherin in human non-small cell lung carcinoma. Cancer Res Treat. 2004;36(1):56–61.
Google Scholar | Crossref36. Hommura, F, Furuuchi, K, Yamazaki, K, Ogura, S, Kinoshita, I, Shimizu, M, Moriuchi, T, Katoh, H, Nishimura, M, Dosaka-Akita, H. Increased expression of beta-catenin predicts better prognosis in nonsmall cell lung carcinomas. Cancer. 2002;94(3):752–8.
Google Scholar | Crossref37. Retera, JM, Leers, MP, Sulzer, MA, Theunissen, PH. The expression of beta-catenin in non-small-cell lung cancer: a clinicopathological study. J Clin Pathol. 1998;51(12):891–4.
Google Scholar | Crossref38. Xu, H, Lin, D, Wang, L, Liu, N, Wang, E. [Expression and mutation of β-catenin in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi. 2004;7(5):409–13.
Google Scholar39. Kren, L, Hermanová, M, Goncharuk, VN, Kaur, P, Ross, JS, Pavlovský, Z, Dvorak, K. Downregulation of plasma membrane expression/cytoplasmic accumulation of beta-catenin predicts shortened survival in non-small cell lung cancer. A Clinicopathologic Study of 100 Cases. Cesk Patol. 2003;39(1):17–20.
Google Scholar40. Pirinen, RT, Hirvikoski, P, Johansson, RT, Hollmén, S, Kosma, VM. Reduced expression of alpha-catenin, beta-catenin, and gamma-catenin is associated with high cell proliferative activity and poor differentiation in non-small cell lung cancer. J Clin Pathol. 2001;54(5):391–5.
Google Scholar | Crossref41. Yang, Y, Shen, J, He, J, Jiang, G. A meta-analysis of abnormal β-catenin immunohistochemical expression as a prognostic factor in lung cancer: location is more important. Clin Transl Oncol. 2016;18(7):685–92.
Google Scholar | Crossref42. Christofori, G . New signals from the invasive front. Nature. 2006;441(7092):444–50.
Google Scholar | Crossref43. Kinzler, KW, Vogelstein, B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.
Google Scholar | Crossref44. Morin, PJ, Sparks, AB, Korinek, V, Barker, N, Clevers, H, Vogelstein, B, Kinzler, KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275(5307):1787–90.
Google Scholar | Crossref

Comments (0)

No login
gif