1.
Snyder, JM, Washington, IM, Birkland, T, Chang, MY, Frevert, CW. Correlation of versican expression, accumulation, and degradation during embryonic development by quantitative immunohistochemistry. J Histochem Cytochem. 2015;63(12):952–67.
Google Scholar |
SAGE Journals2.
Zako, M, Shinomura, T, Ujita, M, Ito, K, Kimata, K. Expression of PG-M(V3), an alternatively spliced form of PG-M without a chondroitin sulfate attachment in region in mouse and human tissues. J Biol Chem. 1995;270(8):3914–8.
Google Scholar |
Crossref3.
Kischel, P, Waltregny, D, Dumont, B, Turtoi, A, Greffe, Y, Kirsch, S, De Pauw, E, Castronovo, V. Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer. 2010;126(3):640–50.
Google Scholar |
Crossref4.
Dours-Zimmermann, MT, Zimmermann, DR. A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem. 1994;269(52):32992–8.
Google Scholar |
Crossref5.
Andersson-Sjoland, A, Hallgren, O, Rolandsson, S, Weitoft, M, Tykesson, E, Larsson-Callerfelt, AK, Rydell-Tormanen, K, Bjermer, L, Malmstrom, A, Karlsson, JC, Westergren-Thorsson, G. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology. 2015;25(3):243–51.
Google Scholar |
Crossref6.
Bensadoun, ES, Burke, AK, Hogg, JC, Roberts, CR. Proteoglycan deposition in pulmonary fibrosis. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1819–28.
Google Scholar |
Crossref7.
Bensadoun, ES, Burke, AK, Hogg, JC, Roberts, CR. Proteoglycans in granulomatous lung diseases. Eur Respir J. 1997;10(12):2731–7.
Google Scholar |
Crossref8.
Chang, MY, Tanino, Y, Vidova, V, Kinsella, MG, Chan, CK, Johnson, PY, Wight, TN, Frevert, CW. A rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease. Matrix Biol. 2014;34:1–12.
Google Scholar |
Crossref |
Medline9.
Gill, S, Wight, TN, Frevert, CW. Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec. 2010;293(6):968–81.
Google Scholar |
Crossref10.
Kang, I, Chang, MY, Wight, TN, Frevert, CW. Proteoglycans as immunomodulators of the innate immune response to lung infection. J Histochem Cytochem. 2018;66(4):241–59.
Google Scholar |
SAGE Journals11.
Merrilees, MJ, Ching, PS, Beaumont, B, Hinek, A, Wight, TN, Black, PN. Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease. Respir Res. 2008;9:41.
Google Scholar |
Crossref |
Medline12.
Potter-Perigo, S, Johnson, PY, Evanko, SP, Chan, CK, Braun, KR, Wilkinson, TS, Altman, LC, Wight, TN. Polyinosine-polycytidylic acid stimulates versican accumulation in the extracellular matrix promoting monocyte adhesion. Am J Respir Cell Mol Biol. 2010;43(1):109–20.
Google Scholar |
Crossref13.
Wight, TN, Kang, I, Merrilees, MJ. Versican and the control of inflammation. Matrix Biol. 2014;35:152–61.
Google Scholar |
Crossref14.
Papadas, A, Arauz, G, Cicala, A, Wiesner, J, Asimakopoulos, F. Versican and versican-matrikines in cancer progression, inflammation, and immunity. J Histochem Cytochem. 2020;68(12):871–85.
Google Scholar |
SAGE Journals15.
Boyd, DF, Allen, EK, Randolph, AG, Guo, XJ, Weng, Y, Sanders, CJ, Bajracharya, R, Lee, NK, Guy, CS, Vogel, P, Guan, W, Li, Y, Liu, X, Novak, T, Newhams, MM, Fabrizio, TP, Wohlgemuth, N, Mourani, PM, Investigators, PPICI, Wight, TN, Schultz-Cherry, S, Cormier, SA, Shaw-Saliba, K, Pekosz, A, Rothman, RE, Chen, KF, Yang, Z, Webby, RJ, Zhong, N, Crawford, JC, Thomas, PG. Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature. 2020;587(7834):466–71.
Google Scholar |
Crossref16.
Evanko, SP, Potter-Perigo, S, Bollyky, PL, Nepom, GT, Wight, TN. Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol. 2012;31(2):90–100.
Google Scholar |
Crossref |
Medline17.
Kang, I, Harten, IA, Chang, MY, Braun, KR, Sheih, A, Nivison, MP, Johnson, PY, Workman, G, Kaber, G, Evanko, SP, Chan, CK, Merrilees, MJ, Ziegler, SF, Kinsella, MG, Frevert, CW, Wight, TN. Versican deficiency significantly reduces lung inflammatory response induced by polyinosine-polycytidylic acid stimulation. J Biol Chem. 2017;292(1):51–63.
Google Scholar |
Crossref |
Medline18.
McMahon, M, Ye, S, Izzard, L, Dlugolenski, D, Tripp, RA, Bean, AG, McCulloch, DR, Stambas, J. ADAMTS5 is a critical regulator of virus-specific T cell immunity. PLoS Biol. 2016;14(11):e1002580.
Google Scholar |
Crossref19.
Wight, TN, Frevert, CW, Debley, JS, Reeves, SR, Parks, WC, Ziegler, SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol. 2017;312:1–14.
Google Scholar |
Crossref20.
Islam, S, Watanabe, H. Versican: a dynamic regulator of the extracellular matrix. J Histochem Cytochem. 2020;68(11):763–75.
Google Scholar |
SAGE Journals21.
Chang, MY, Kang, I, Gale, M, Manicone, AM, Kinsella, MG, Braun, KR, Wigmosta, T, Parks, WC, Altemeier, WA, Wight, TN, Frevert, CW. Versican is produced by trif- and type I interferon-dependent signaling in macrophages and contributes to fine control of innate immunity in lungs. Am J Physiol Lung Cell Mol Physiol. 2017;313(6):L1069–86.
Google Scholar |
Crossref22.
Kellar, GG, Barrow, KA, Rich, LM, Debley, JS, Wight, TN, Ziegler, SF, Reeves, SR. Loss of versican and production of hyaluronan in lung epithelial cells are associated with airway inflammation during RSV infection. J Biol Chem. 2021;296:100076.
Google Scholar |
Crossref23.
Kawashima, H, Hirose, M, Hirose, J, Nagakubo, D, Plaas, AH, Miyasaka, M. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J Biol Chem. 2000;275(45):35448–56.
Google Scholar |
Crossref24.
Wight, TN, Kinsella, MG, Evanko, SP, Potter-Perigo, S, Merrilees, MJ. Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta. 2014;1840(8):2441–51.
Google Scholar |
Medline25.
Wight, TN, Kang, I, Evanko, SP, Harten, IA, Chang, MY, Pearce, OMT, Allen, CE, Frevert, CW. Versican-A critical extracellular matrix regulator of immunity and inflammation. Front Immunol. 2020;11:512.
Google Scholar |
Crossref |
Medline26.
Vallet, SD, Clerc, O, Ricard-Blum, S. Glycosaminoglycan-protein interactions: the first draft of the glycosaminoglycan interactome. J Histochem Cytochem. 2021;69:93–104.
Google Scholar |
SAGE Journals27.
Hirose, J, Kawashima, H, Yoshie, O, Tashiro, K, Miyasaka, M. Versican interacts with chemokines and modulates cellular responses. J Biol Chem. 2001;276(7):5228–34.
Google Scholar |
Crossref28.
Graham, GJ, Handel, TM, Proudfoot AEI. Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans. Trends Immunol. 2019;40(6):472–81.
Google Scholar |
Crossref29.
Handel, TM, Dyer, DP. Perspectives on the biological role of chemokine:glycosaminoglycan interactions. J Histochem Cytochem. 2021;69:87–91.
Google Scholar |
SAGE Journals30.
Baarsma, HA, Menzen, MH, Halayko, AJ, Meurs, H, Kerstjens, HA, Gosens, R. Beta-Catenin signaling is required for TGF-beta1-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L956–65.
Google Scholar |
Crossref31.
Rahmani, M, Carthy, JM, McManus, BM. Mapping of the Wnt/beta-catenin/TCF response elements in the human versican promoter. Methods Mol Biol. 2012;836:35–52.
Google Scholar |
Crossref |
Medline32.
Rahmani, M, Read, JT, Carthy, JM, McDonald, PC, Wong, BW, Esfandiarei, M, Si, X, Luo, Z, Luo, H, Rennie, PS, McManus, BM. Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem. 2005;280(13):13019–28.
Google Scholar |
Crossref33.
Venkatesan, N, Tsuchiya, K, Kolb, M, Farkas, L, Bourhim, M, Ouzzine, M, Ludwig, MS. Glycosyltransferases and glycosaminoglycans in bleomycin and transforming growth factor-beta1-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2014;50(3):583–94.
Google Scholar |
Crossref34.
Samuel, CE. Antiviral actions of interferons. Clin Microbiol Rev. 2001;14(4):778–809.
Google Scholar |
Crossref |
Medline35.
Stetson, DB, Medzhitov, R. Type I interferons in host defense. Immunity. 2006;25(3):373–81.
Google Scholar |
Crossref36.
Davis, AS, Chang, MY, Brune, JE, Hallstrand, TS, Johnson, B, Lindhartsen, S, Hewitt, SM, Frevert, CW. The use of quantitative digital pathology to measure proteoglycan and glycosaminoglycan expression and accumulation in healthy and diseased tissues. J Histochem Cytochem. 2020;69:137–55.
Google Scholar37.
Cottey, R, Rowe, CA, Bender, BS. Influenza virus. Curr Protoc Immunol. 2001;Chapter 19:Unit 19.11.
Google Scholar |
Crossref38.
Foster, WM, Walters, DM, Longphre, M, Macri, K, Miller, LM. Methodology for the measurement of mucociliary function in the mouse by scintigraphy. J Appl Physiol. 2001;90(3):1111–7.
Google Scholar |
Crossref39.
Felgenhauer, JL, Brune, JE, Long, ME, Manicone, AM, Chang, MY, Brabb, TL, Altemeier, WA, Frevert, CW. Evaluation of nutritional gel supplementation in C57BL/6J mice infected with mouse-adapted influenza A/PR/8/34 virus. Comp Med. 2020;70(6):471–86.
Google Scholar |
Crossref40.
Hsia, CC, Hyde, DM, Ochs, M, Weibel, ER, Structure AEJTFoQAoL . An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181(4):394–418.
Google Scholar |
Crossref |
Medline41.
Matute-Bello, G, Downey, G, Moore, BB, Groshong, SD, Matthay, MA, Slutsky, AS, Kuebler, WM, Acute Lung Injury in Animals Study G. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38.
Google Scholar |
Crossref42.
Dietert, K, Gutbier, B, Wienhold, SM, Reppe, K, Jiang, X, Yao, L, Chaput, C, Naujoks, J, Brack, M, Kupke, A, Peteranderl, C, Becker, S, von Lachner, C, Baal, N, Slevogt, H, Hocke, AC, Witzenrath, M, Opitz, B, Herold, S, Hackstein, H, Sander, LE, Suttorp, N, Gruber, AD. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE. 2017;12(11):e0188251.
Google Scholar |
Crossref43.
Anderson, KG, Mayer-Barber, K, Sung, H, Beura, L, James, BR, Taylor, JJ, Qunaj, L, Griffith, TS, Vezys, V, Barber, DL, Masopust, D. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc. 2014;9(1):209–22.
Google Scholar |
Crossref44.
Gauger, PC, Vincent, AL, Loving, CL, Henningson, JN, Lager, KM, Janke, BH, Kehrli, ME, Roth, JA. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus. Vet Pathol. 2012;49(6):900–12.
Google Scholar |
SAGE Journals45.
Henningson, JN, Rajao, DS, Kitikoon, P, Lorusso, A, Culhane, MR, Lewis, NS, Anderson, TK, Vincent, AL. Comparative virulence of wild-type H1N1pdm09 influenza A isolates in swine. Vet Microbiol. 2015;176(1–2):40–9.
Google Scholar |
Crossref46.
Sunwoo, SY, Schotsaert, M, Morozov, I, Davis, AS, Li, Y, Lee, J, McDowell, C, Meade, P, Nachbagauer, R, Garcia-Sastre, A, Ma, W, Krammer, F, Richt, JA. A universal influenza virus vaccine candidate tested in a pig vaccination-infection model in the presence of maternal antibodies. Vaccines (Basel). 2018;6(3):64.
Google Scholar |
Crossref47.
Vaughan, AE, Brumwell, AN, Xi, Y, Gotts, JE, Brownfield, DG, Treutlein, B, Tan, K, Tan, V, Liu, FC, Looney, MR, Matthay, MA, Rock, JR, Chapman, HA. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature. 2015;517(7536):621–5.
Google Scholar |
Crossref48.
Kanegai, CM, Xi, Y, Donne, ML, Gotts, JE, Driver, IH, Amidzic, G, Lechner, AJ, Jones, KD, Vaughan, AE, Chapman, HA, Rock, JR. Persistent pathology in influenza-infected mouse lungs. Am J Respir Cell Mol Biol. 2016;55(4):613–5.
Google Scholar |
Crossref49.
Fernanda, de, Mello Costa, M, Weiner, AI, Vaughan, AE. Basal-like progenitor cells: a review of dysplastic alveolar regeneration and remodeling in lung repair. Stem Cell Rep. 2020;15(5):1015–25.
Google Scholar50.
Edelman, BL, Redente, EF. Isolation and characterization of mouse fibroblasts. Methods Mol Biol. 2018;1809:59–67.
Google Scholar |
Crossref51.
Livak, KJ, Schmittgen, TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) method. Methods. 2001;25(4):402–8.
Google Scholar |
Crossref52.
Meyerholz, DK, Beck, AP. Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest. 2018;98(7):844–55.
Google Scholar |
Crossref53.
Rehg, JE, Bush, D, Ward, JM. The utility of immunohistochemistry for the identification of hematopoietic and lymphoid cells in normal tissues and interpretation of proliferative and inflammatory lesions of mice and rats. Toxicol Pathol. 2012;40(2):345–74.
Google Scholar |
SAGE Journals54.
Hung, C, Linn, G, Chow, YH, Kobayashi, A, Mittelsteadt, K, Altemeier, WA, Gharib, SA, Schnapp, LM, Duffield, JS. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188(7):820–30.
Google Scholar |
Crossref55.
Kishi, M, Aono, Y, Sato, S, Koyama, K, Azuma, M, Abe, S, Kawano, H, Kishi, J, Toyoda, Y, Okazaki, H, Ogawa, H, Uehara, H, Nishioka, Y. Blockade of platelet-derived growth factor receptor-β, not receptor-α ameliorates bleomycin-induced pulmonary fibrosis in mice. PLoS ONE. 2018;13(12):e0209786.
Google Scholar |
Crossref56.
Arimori, Y, Nakamura, R, Yamada, H, Shibata, K, Maeda, N, Kase, T, Yoshikai, Y. Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive
Comments (0)