1. Ossipov, MH, Morimura, K, Porreca, F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014; 8: 143–151.
Google Scholar |
Crossref |
Medline |
ISI2. Loeser, JD, Treede, R-D. The Kyoto protocol of IASP basic pain terminology. Pain 2008; 137: 473–477.
Google Scholar |
Crossref |
Medline |
ISI3. Bardin, L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 2011; 22: 390–404.
Google Scholar |
Crossref |
Medline |
ISI4. Millan, MJ. Descending control of pain. Prog Neurobiol 2002; 66: 355–474.
Google Scholar |
Crossref |
Medline |
ISI5. Benarroch, EE. Dorsal horn circuitry: complexity and implications for mechanisms of neuropathic pain. Neurology 2016; 86: 1060–1069.
Google Scholar |
Crossref |
Medline6. Todd, AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010; 11: 823–836.
Google Scholar |
Crossref |
Medline |
ISI7. Braz, JM, Nassar, MA, Wood, JN, Basbaum, AI. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 2005; 47: 787–793.
Google Scholar |
Crossref |
Medline8. Polgár, E, Puskár, Z, Watt, C, Matesz, C, Todd, AJ. Selective innervation of lamina I projection neurones that possess the neurokinin 1 receptor by serotonin-containing axons in the rat spinal cord. Neuroscience 2002; 109: 799–809.
Google Scholar |
Crossref |
Medline9. Jones, SL, Light, AR. Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J Comp Neurol 1990; 297: 267–282.
Google Scholar |
Crossref |
Medline |
ISI10. Laporte, AM, Fattaccini, CM, Lombard, MC, Chauveau, J, Hamon, M. Effects of dorsal rhizotomy and selective lesion of serotonergic and noradrenergic systems on 5-HT1A, 5-HT1B, and 5-HT3 receptors in the rat spinal cord. J Neural Transm Gen Sect 1995; 100: 207–223.
Google Scholar |
Crossref |
Medline11. Doly, S, Fischer, J, Brisorgueil, MJ, Vergé, D, Conrath, M. 5-HT5A receptor localization in the rat spinal cord suggests a role in nociception and control of pelvic floor musculature. J Comp Neurol 2004; 476: 316–329.
Google Scholar |
Crossref |
Medline12. Conte, D, Legg, ED, McCourt, AC, Silajdzic, E, Nagy, GG, Maxwell, DJ. Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 2005; 134: 165–173.
Google Scholar |
Crossref |
Medline13. Liu, FY, Xing, GG, Qu, XX, Xu, IS, Han, JS, Wan, Y. Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. J Pharmacol Exp Ther 2007; 321: 1046–1053.
Google Scholar |
Crossref |
Medline14. Maxwell, DJ, Kerr, R, Rashid, S, Anderson, E. Characterisation of axon terminals in the rat dorsal horn that are immunoreactive for serotonin 5-HT3A receptor subunits. Exp Brain Res 2003; 149: 114–124.
Google Scholar |
Crossref |
Medline15. Brenchat, A, Nadal, X, Romero, L, Ovalle, S, Muro, A, Sánchez-Arroyos, R, Portillo-Salido, E, Pujol, M, Montero, A, Codony, X, Burgueño, J, Zamanillo, D, Hamon, M, Maldonado, R, Vela, JM. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain 2010; 149: 483–494.
Google Scholar |
Crossref |
Medline16. Brenchat, A, Zamanillo, D, Hamon, M, Romero, L, Vela, JM. Role of peripheral versus spinal 5-HT(7) receptors in the modulation of pain undersensitizing conditions. Eur J Pain 2012; 16: 72–81.
Google Scholar |
Crossref |
Medline17. Doly, S, Madeira, A, Fischer, J, Brisorgueil, MJ, Daval, G, Bernard, R, Vergé, D, Conrath, M. The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J Comp Neurol 2004; 472: 496–511.
Google Scholar |
Crossref |
Medline |
ISI18. Kawamata, T, Omote, K, Toriyabe, M, Yamamoto, H, Namiki, A. The activation of 5-HT(3) receptors evokes GABA release in the spinal cord. Brain Res 2003; 978: 250–255.
Google Scholar |
Crossref |
Medline19. Doly, S, Fischer, J, Brisorgueil, MJ, Vergé, D, Conrath, M. Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence. J Comp Neurol 2005; 490: 256–269.
Google Scholar |
Crossref |
Medline20. Rahman, W, Bannister, K, Bee, LA, Dickenson, AH. A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat. Brain Res 2011; 1382: 29–36.
Google Scholar |
Crossref |
Medline21. Kidd, EJ, Laporte, AM, Langlois, X, Fattaccini, CM, Doyen, C, Lombard, MC, Gozlan, H, Hamon, M. 5-HT3 receptors in the rat Central nervous system are mainly located on nerve fibres and terminals. Brain Res 1993; 612: 289–298.
Google Scholar |
Crossref |
Medline22. Daval, G, Vergé, D, Basbaum, AI, Bourgoin, S, Hamon, M. Autoradiographic evidence of serotonin1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett 1987; 83: 71–76.
Google Scholar |
Crossref |
Medline23. Van Steenwinckel, J, Noghero, A, Thibault, K, Brisorgueil, MJ, Fischer, J, Conrath, M. The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience 2009; 161: 838–846.
Google Scholar |
Crossref |
Medline24. Zeitz, KP, Guy, N, Malmberg, AB, Dirajlal, S, Martin, WJ, Sun, L, Bonhaus, DW, Stucky, CL, Julius, D, Basbaum, AI. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 2002; 22: 1010–1019.
Google Scholar |
Crossref |
Medline25. Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science 1965; 150: 971–979.
Google Scholar |
Crossref |
Medline |
ISI26. Zhuo, M. Descending facilitation: from basic science to the treatment of chronic pain. Mol Pain 2017; 13: 1–12.
Google Scholar |
SAGE Journals27. Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M, Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43–03.
Google Scholar |
Crossref |
Medline |
ISI28. Hannon, J, Hoyer, D. Molecular biology of 5-HT receptors. Behav Brain Res 2008; 195: 198–213.
Google Scholar |
Crossref |
Medline |
ISI29. Kuraishi, Y, Hirota, N, Satoh, M, Takagi, H. Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests. Brain Res 1985; 326: 168–171.
Google Scholar |
Crossref |
Medline |
ISI30. Advokat, C. Intrathecal coadministration of serotonin and morphine differentially modulates the tail-flick reflex of intact and spinal rats. Pharmacol Biochem Behav 1993; 45: 871–879.
Google Scholar |
Crossref |
Medline31. Lu, Y, Perl, ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol 2007; 582: 127–136.
Google Scholar |
Crossref |
Medline32. Fasmer, OB, Berge, OG, Hole, K. Changes in nociception after lesions of descending serotonergic pathways induced with 5,6-dihydroxytryptamine. Different effects in the formalin and tail-flick tests. Neuropharmacology 1985; 24: 729–734.
Google Scholar |
Crossref |
Medline |
ISI33. Qu, CL, Huo, FQ, Huang, FS, Li, YQ, Tang, JS, Jia, H. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience 2008; 152: 487–494.
Google Scholar |
Crossref |
Medline34. Xiao, DQ, Tang, JS, Yuan, B, Jia, H. Inhibitory effects of 5-hydroxytryptamine microinjection into thalamic nucleus submedius on rat tail flick reflex are mediated by 5-HT2 receptors. Neurosci Lett 1999; 260: 85–88.
Google Scholar |
Crossref |
Medline35. Xiao, DQ, Zhu, JX, Tang, JS, Jia, H. 5-hydroxytryptamine 1A (5-HT1A) but not 5-HT3 receptor is involved in mediating the nucleus submedius 5-HT-evoked antinociception in the rat. Brain Res 2005; 1046: 38–44.
Google Scholar |
Crossref |
Medline36. Berge, OG. Effects of 5-HT receptor agonists and antagonists on a reflex response to radiant heat in normal and spinally transected rats. Pain 1982; 13: 253–266.
Google Scholar |
Crossref |
Medline |
ISI37. Meller, ST, Lewis, SJ, Ness, TJ, Brody, MJ, Gebhart, GF. Vagal afferent-mediated inhibition of a nociceptive reflex by intravenous serotonin in the rat. I. Characterization. Brain Res 1990; 524: 90–100.
Google Scholar |
Crossref |
Medline38. Colpaert, FC, Tarayre, JP, Koek, W, Pauwels, PJ, Bardin, L, Xu, XJ, Wiesenfeld-Hallin, Z, Cosi, C, Carilla-Durand, E, Assié, MB, Vacher, B. Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, Central analgesia. Neuropharmacology 2002; 43: 945–958.
Google Scholar |
Crossref |
Medline39. Lin, Q, Peng, YB, Willis, WD. Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5-hydroxytryptamine(1A) receptors. J Pharmacol Exp Ther 1996; 276: 958–967.
Google Scholar |
Medline40. Nadeson, R, Goodchild, CS. Antinociceptive role of 5-HT1A receptors in rat spinal cord. Br J Anaesth 2002; 88: 679–684.
Google Scholar |
Crossref |
Medline |
ISI41. Gjerstad, J, Tjølsen, A, Hole, K. The effect of 5-HT1A receptor stimulation on nociceptive dorsal horn neurones in rats. Eur J Pharmacol 1996; 318: 315–321.
Google Scholar |
Crossref |
Medline |
ISI42. Peng, YB, Lin, Q, Willis, WD. The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. J Pharmacol Exp Ther 1996; 276: 116–124.
Google Scholar |
Medline |
ISI43. You, HJ, Colpaert, FC, Arendt-Nielsen, L. The novel analgesic and high-efficacy 5-HT1A receptor agonist F 13640 inhibits nociceptive responses, wind-up, and after-discharges in spinal neurons and withdrawal reflexes. Exp Neurol 2005; 191: 174–183.
Google Scholar |
Crossref |
Medline44. Aira, Z, Buesa, I, Salgueiro, M, Bilbao, J, Aguilera, L, Zimmermann, M, Azkue, JJ. Subtype-specific changes in 5-HT receptor-mediated modulation of C fibre-evoked spinal field potentials are triggered by peripheral nerve injury. Neuroscience 2010; 168: 831–841.
Google Scholar |
Crossref |
Medline45. Gjerstad, J, Tjølsen, A, Hole, K. A dual effect of 5-HT1B receptor stimulation on nociceptive dorsal horn neurones in rats. Eur J Pharmacol 1997; 335: 127–132.
Google Scholar |
Crossref |
Medline |
ISI46. Ali, Z, Wu, G, Kozlov, A, Barasi, S. The actions of 5-HT1 agonists and antagonists on nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Brain Res 1994; 661: 83–90.
Google Scholar |
Comments (0)