Considerations for Whole-Slide Analysis of Murine Xenografts Experiments

1. Ireson, CR, Alavijeh, MS, Palmer, AM, Fowler, ER, Jones, HJ. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer. 2019;121(2):101–8. doi:10.1038/s41416-019-0495-5.
Google Scholar | Crossref2. Jung, J . Human tumor xenograft models for preclinical assessment of anticancer drug development. Toxicol Res. 2014;30(1):1–5. doi:10.5487/tr.2014.30.1.001.
Google Scholar | Crossref3. Euhus, DM, Hudd, C, LaRegina, MC, Johnson, FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31(4):229–34. doi:10.1002/jso.2930310402.
Google Scholar | Crossref4. Tomayko, MM, Reynolds, CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24(3):148–54. doi:10.1007/bf00300234.
Google Scholar | Crossref5. Ramasawmy, R, Johnson, SP, Roberts, TA, Stuckey, DJ, David, AL, Pedley, RB, Lythgoe, MF, Siow, B, Walker-Samuel, S. Monitoring the growth of an orthotopic tumour xenograft model: multi-modal imaging assessment with benchtop MRI (1T), high-field MRI (9.4T), ultrasound and bioluminescence. PLoS ONE. 2016;11(5):e0156162. doi:10.1371/journal.pone.0156162.
Google Scholar | Crossref6. Bland, AR, Shrestha, N, Bower, RL, Rosengren, RJ, Ashton, JC. The effect of metformin in EML(4)-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models. Biochem Pharmacol. 2021;183:114345. doi:10.1016/j.bcp.2020.114345.
Google Scholar | Crossref7. Grasl-Kraupp, B, Ruttkay-Nedecky, B, Koudelka, H, Bukowska, K, Bursch, W, Schulte-Hermann, R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology. 1995;21(5):1465–8. doi:10.1002/hep.1840210534.
Google Scholar | Crossref8. Garrity, MM, Burgart, LJ, Riehle, DL, Hill, EM, Sebo, TJ, Witzig, T. Identifying and quantifying apoptosis: navigating technical pitfalls. Mod Pathol. 2003;16(4):389–94. doi:10.1097/01.Mp.0000062657.30170.92.
Google Scholar | Crossref9. Yang, M, Antoine, DJ, Weemhoff, JL, Jenkins, RE, Farhood, A, Park, BK, Jaeschke, H. Biomarkers distinguish apoptotic and necrotic cell death during hepatic ischemia/reperfusion injury in mice. Liver Transpl. 2014;20(11):1372–82. doi:10.1002/lt.23958.
Google Scholar | Crossref10. He, F, Deng, X, Wen, B, Liu, Y, Sun, X, Xing, L, Minami, A, Huang, Y, Chen, Q, Zanzonico, PB, Ling, CC, Li, GC. Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res. 2008;68(20):8597–606. doi:10.1158/0008-5472.Can-08-0677.
Google Scholar | Crossref11. Böğürcü, N, Seidel, S, Garvalov, BK, Acker, T. Analysis of hypoxia and the hypoxic response in tumor xenografts. Methods Mol Biol. 2018;1742:283–300. doi:10.1007/978-1-4939-7665-2_25.
Google Scholar | Crossref12. Tang, HL, Yuen, KL, Tang, HM, Fung, MC. Reversibility of apoptosis in cancer cells. Br J Cancer. 2009;100(1):118–22. doi:10.1038/sj.bjc.6604802.
Google Scholar | Crossref13. Prokhorova, EA, Egorshina, AY, Zhivotovsky, B, Kopeina, GS. The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene. 2020;39(1):1–16. doi:10.1038/s41388-019-0980-6.
Google Scholar | Crossref14. Brown, JM, Wilson, WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 2004;4(6):437–47. doi:10.1038/nrc1367.
Google Scholar | Crossref15. Gatenby, RA, Gillies, RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9. doi:10.1038/nrc1478.
Google Scholar | Crossref16. Thomlinson, RH, Gray, LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9(4):539–49. doi:10.1038/bjc.1955.55.
Google Scholar | Crossref17. Bagchi, A, Madaj, Z, Engel, KB, Guan, P, Rohrer, DC, Valley, DR, et al. Impact of Preanalytical Factors on the Measurement of Tumor Tissue Biomarkers Using Immunohistochemistry. J Histochem Cytochem. 2021; 69(5):297–320. doi:10.1369/0022155421995600.
Google Scholar | SAGE Journals18. Frezzetti, D, Gallo, M, Maiello, MR, D’Alessio, A, Esposito, C, Chicchinelli, N, et al. VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 2017;21(10):959–66. doi:10.1080/14728222.2017.1371137.
Google Scholar | Crossref19. Boyce, RW, Dorph-Petersen, KA, Lyck, L, Gundersen, HJ. Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol Pathol. 2010;38(7):1011–25. doi:10.1177/0192623310385140.
Google Scholar | SAGE Journals20. Brown, DL . Practical stereology applications for the pathologist. Vet Pathol. 2017;54(3):358–68. doi:10.1177/0300985817695781.
Google Scholar | SAGE Journals21. Davis, AS, Chang, MY, Brune, JE, Hallstrand, TS, Johnson, B, Lindhartsen, S, et al. The use of quantitative digital pathology to measure proteoglycan and glycosaminoglycan expression and accumulation in healthy and diseased tissues. J Histochem Cyto-chem. 2021;69(2):137–55. doi:10.1369/0022155420959146.
Google Scholar | SAGE Journals22. Bressenot, A, Marchal, S, Bezdetnaya, L, Garrier, J, Guillemin, F, Plénat, F. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem. 2009;57(4):289–300. doi:10.1369/jhc.2008.952044.
Google Scholar | SAGE Journals23. Ward, TH, Cummings, J, Dean, E, Greystoke, A, Hou, JM, Backen, A, et al. Biomarkers of apoptosis. Br J Cancer. 2008;99(6):841–6. doi:10.1038/sj.bjc.6604519.
Google Scholar | Crossref

Comments (0)

No login
gif