1.
Chiba, S, Sakata-Yanagimoto, M. Advances in understanding of angioimmunoblastic T-cell lymphoma. Leukemia. 2020;34(10):2592–606.
Google Scholar |
Crossref2.
Ueno, H, Banchereau, J, Vinuesa, CG. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 2015;16(2):142–52.
Google Scholar |
Crossref3.
Ohtani, H, Komeno, T, Agatsuma, Y, Kobayashi, M, Noguchi, M, Nakamura, N. Follicular dendritic cell meshwork in angioimmunoblastic T-cell lymphoma is characterized by accumulation of CXCL13+ cells. J Clin Exp Hematop. 2015;55(2):61–9.
Google Scholar |
Crossref4.
Dogan, A, Gaulard, P, Jaffe, ES, Müller-Hemelink, HK, de Leval, L. Angioimmunoblastic T-cell lymphoma and other nodal lymphomas of T follicular helper cell origin. In: Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, Thiele, J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017. p. 407–12.
Google Scholar5.
Miyasaka, M, Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004;4(5):360–70.
Google Scholar |
Crossref6.
Berg, EL, Robinson, MK, Warnock, RA, Butcher, EC. The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol. 1991;114(2):343–9.
Google Scholar |
Crossref7.
Michie, SA, Streeter, PR, Bolt, PA, Butcher, EC, Picker, LJ. The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am J Pathol. 1993;143(6):1688–98.
Google Scholar8.
Butcher, EC, Picker, LJ. Lymphocyte homing and homeostasis. Science. 1996;272(5258):60–6.
Google Scholar |
Crossref9.
Aloisi, F, Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006; 6(3):205–17.
Google Scholar |
Crossref10.
Kobayashi, M, Mitoma, J, Nakamura, N, Katsuyama, T, Nakayama, J, Fukuda, M. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc Natl Acad Sci U S A. 2004; 101(51):17807–12.
Google Scholar |
Crossref11.
Suzawa, K, Kobayashi, M, Sakai, Y, Hoshino, H, Watanabe, M, Harada, O, Ohtani, H, Fukuda, M, Nakayama, J. Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am J Gastroenterol. 2007;102(7):1499–509.
Google Scholar |
Crossref12.
Maruyama, M, Kobayashi, M, Sakai, Y, Hiraoka, N, Ohya, A, Kageyama, S, Tanaka, E, Nakayama, J, Morohoshi, T. Periductal induction of high endothelial venule-like vessels in type 1 autoimmune pancreatitis. Pancreas. 2013;42(1):53–9.
Google Scholar |
Crossref13.
Inamura, S, Shinagawa, T, Hoshino, H, Sakai, Y, Imamura, Y, Yokoyama, O, Kobayashi, M. Appearance of high endothelial venule-like vessels in benign prostatic hyperplasia is associated with lower urinary tract symptoms. Prostate. 2017;77(7):794–802.
Google Scholar |
Crossref |
Medline14.
Tsutsumiuchi, T, Hoshino, H, Fujieda, S, Kobayashi, M. Induction of peripheral lymph node addressin in human nasal mucosa with eosinophilic chronic rhinosinusitis. Pathology. 2019;51(3):268–73.
Google Scholar |
Crossref15.
Yoshida, H, Imamura, Y, Yoshimura, H, Kobayashi, M. Induction of high endothelial venule-like vessels in oral and cutaneous lichen planus: a comparative study. J Histochem Cytochem. 2020;68(5):343–50.
Google Scholar |
SAGE Journals16.
Muller, WA, Weigl, SA, Deng, X, Phillips, DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993;178(2):449–60.
Google Scholar |
Crossref17.
Streeter, PR, Rouse, BT, Butcher, EC. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol. 1988;107(5):1853–62.
Google Scholar |
Crossref18.
Yeh, JC, Hiraoka, N, Petryniak, B, Nakayama, J, Ellies, LG, Rabuka, D, Hindsgaul, O, Marth, JD, Lowe, JB, Fukuda, M. Novel sulfated lymphocyte homing receptors and their control by a core 1 extension β1,3-N-acetylglucosaminyltransferase. Cell. 2001;105(7): 957–69.
Google Scholar |
Crossref19.
Duijvestijn, AM, Horst, E, Pals, ST, Rouse, BN, Steere, AC, Picker, LJ, Meijer, CJ, Butcher, EC. High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am J Pathol. 1988;130(1):147–55.
Google Scholar20.
Mitsuoka, C, Sawada-Kasugai, M, Ando-Furui, K, Izawa, M, Nakanishi, H, Nakamura, S, Ishida, H, Kiso, M, Kannagi, R. Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J Biol Chem. 1998;273(18):11225–33.
Google Scholar |
Crossref21.
Mitoma, J, Miyazaki, T, Sutton-Smith, M, Suzuki, M, Saito, H, Yeh, JC, Kawano, T, Hindsgaul, O, Seeberger, PH, Panico, M, Haslam, SM, Morris, HR, Cummings, RD, Dell, A, Fukuda, M. The N-glycolyl form of mouse sialyl Lewis X is recognized by selectins but not by HECA-452 and FH6 antibodies that were raised against human cells. Glycoconj J. 2009;26(5):511–23.
Google Scholar |
Crossref22.
Kawashima, H, Petryniak, B, Hiraoka, N, Mitoma, J, Huckaby, V, Nakayama, J, Uchimura, K, Kadomatsu, K, Muramatsu, T, Lowe, JB, Fukuda, M. N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat Immunol. 2005;6(11): 1096–104.
Google Scholar |
Crossref23.
Uchimura, K, Gauguet, JM, Singer, MS, Tsay, D, Kannagi, R, Muramatsu, T, von Andrian, UH, Rosen, SD. A major class of L-selectin ligands is eliminated in mice deficient in two sulfotransferases expressed in high endothelial venules. Nat Immunol. 2005;6(11):1105–13.
Google Scholar |
Crossref24.
Tsutsumiuchi, M, Hoshino, H, Kogami, A, Tsutsumiuchi, T, Yokoyama, O, Akama, TO, Kobayashi, M. Preferential expression of sialyl 6’-sulfo N-acetyllactosamine-capped O-glycans on high endothelial venules in human peripheral lymph nodes. Lab Invest. 2019;99(10): 1428–41.
Google Scholar |
Crossref25.
Patnode, ML, Yu, SY, Cheng, CW, Ho, MY, Tegesjö, L, Sakuma, K, Uchimura, K, Khoo, KH, Kannagi, R, Rosen, SD. KSGal6ST generates galactose-6-O-sulfate in high endothelial venules but does not contribute to L-selectin-dependent lymphocyte homing. Glycobiology. 2013; 23(3):381–94.
Google Scholar |
Crossref26.
Akama, TO, Nakayama, J, Nishida, K, Hiraoka, N, Suzuki, M, McAuliffe, J, Hindsgaul, O, Fukuda, M, Fukuda, MN. Human corneal GlcNAc 6-O-sulfotransferase and mouse intestinal GlcNAc 6-O-sulfotransferase both produce keratan sulfate. J Biol Chem. 2001;276(19):16271–8.
Google Scholar |
Crossref27.
Fina, L, Molgaard, HV, Robertson, D, Bradley, NJ, Monaghan, P, Delia, D, Sutherland, DR, Baker, MA, Greaves, MF. Expression of the CD34 gene in vascular endothelial cells. Blood. 1990;75(12):2417–26.
Google Scholar |
Crossref28.
North, SJ, Huang, HH, Sundaram, S, Jang-Lee, J, Etienne, AT, Trollope, A, Chalabi, S, Dell, A, Stanley, P, Haslam, SM. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem. 2010;285(8):5759–75.
Google Scholar |
Crossref29.
Hiraoka, N, Petryniak, B, Nakayama, J, Tsuboi, S, Suzuki, M, Yeh, JC, Izawa, D, Tanaka, T, Miyasaka, M, Lowe, JB, Fukuda, M. A novel, high endothelial venule--specific sulfotransferase expresses 6-sulfo sialyl Lewisx, an L-selectin ligand displayed by CD34. Immunity. 1999; 11(1):79–89.
Google Scholar |
Crossref30.
Bistrup, A, Bhakta, S, Lee, JK, Belov, YY, Gunn, MD, Zuo, FR, Huang, CC, Kannagi, R, Rosen, SD, Hemmerich, S. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol. 1999;145(4):899–910.
Google Scholar |
Crossref31.
Kobayashi, M, Mitoma, J, Hoshino, H, Yu, SY, Shimojo, Y, Suzawa, K, Khoo, KH, Fukuda, M, Nakayama, J. Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venule-like vessels in gastric MALT lymphoma. J Pathol. 2011; 224(1):67–77.
Google Scholar |
Crossref |
Medline32.
Fujiwara, M, Kobayashi, M, Hoshino, H, Uchimura, K, Nakada, T, Masumoto, J, Sakai, Y, Fukuda, M, Nakayama, J. Expression of long-form N-acetylglucosamine-6-O-sulfotransferase 1 in human high endothelial venules. J Histochem Cytochem. 2012;60(5):397–407.
Google Scholar |
SAGE Journals33.
Taga, M, Hoshino, H, Low, S, Imamura, Y, Ito, H, Yokoyama, O, Kobayashi, M. A potential role for 6-sulfo sialyl Lewis X in metastasis of bladder urothelial carcinoma. Urol Oncol. 2015;33(11):496.e1–9.
Google Scholar |
Crossref34.
Ohmori, K, Kanda, K, Mitsuoka, C, Kanamori, A, Kurata-Miura, K, Sasaki, K, Nishi, T, Tamatani, T, Kannagi, R. P- and E-selectins recognize sialyl 6-sulfo Lewis X, the recently identified L-selectin ligand. Biochem Biophys Res Commun. 2000;278(1):90–6.
Google Scholar |
Crossref35.
Foss, HD, Anagnostopoulos, I, Herbst, H, Grebe, M, Ziemann, K, Hummel, M, Stein, H. Patterns of cytokine gene expression in peripheral T-cell lymphoma of angioimmunoblastic lymphadenopathy type. Blood. 1995; 85(10):2862–9.
Google Scholar |
Crossref36.
Onder, L, Danuser, R, Scandella, E, Firner, S, Chai, Q, Hehlgans, T, Stein, JV, Ludewig, B. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med. 2013;210(3):465–73.
Google Scholar |
Crossref37.
Muramatsu, T. Vascular system of lymph nodes: vascular density of AILD and malignant lymphomas with special reference to HEV. Fukushima J Med Sci. 1987; 33(1):17–28.
Google Scholar38.
Ohya, A, Kobayashi, M, Sakai, Y, Kawashima, H, Kageyama, S, Nakayama, J. Lymphocyte recruitment via high endothelial venules in lymphoid stroma of Warthin’s tumour. Pathology. 2013;45(2):150–4.
Google Scholar |
Crossref39.
Sakai, Y, Hoshino, H, Kitazawa, R, Kobayashi, M. High endothelial venule-like vessels and lymphocyte recruitment in testicular seminoma. Andrology. 2014;2(2):282–9.
Google Scholar |
Crossref40.
Low, S, Sakai, Y, Hoshino, H, Hirokawa, M, Kawashima, H, Higuchi, K, Imamura, Y, Kobayashi, M. High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma. Pathology. 2016;48(7):666–74.
Google Scholar |
Crossref41.
Hiraoka, N, Petryniak, B, Kawashima, H, Mitoma, J, Akama, TO, Fukuda, MN, Lowe, JB, Fukuda, M. Significant decrease in α1,3-linked fucose in association with increase in 6-sulfated N-acetylglucosamine in peripheral lymph node addressin of FucT-VII-deficient mice exhibiting diminished lymphocyte homing. Glycobiology. 2007;17(3):277–93.
Google Scholar |
Crossref42.
Malý, P, Thall, A, Petryniak, B, Rogers, CE, Smith, PL, Marks, RM, Kelly, RJ, Gersten, KM, Cheng, G, Saunders, TL, Camper, SA, Camphausen, RT, Sullivan, FX, Isogai, Y, Hindsgaul, O, von Andrian, UH, Lowe, JB. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996;86(4):643–53.
Google Scholar |
Crossref
Comments (0)