1. Blechacz, B, Komuta, M, Roskams, T, et al. Clinical diagnosis and staging of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 8: 515–522.
Google Scholar |
Crossref2. Hughes, T, O’Connor, T, Techasen, A, et al. Opisthorchiasis and cholangiocarcinoma in Southeast Asia: an unresolved problem. Int J Gen Med 2017; 10: 227–237.
Google Scholar |
Crossref |
Medline3. Khan, SA, Toledano, MB, Taylor-Robinson, SD. Epidemiology, risk factors, and pathogenesis of cholangiocarcinoma. HPB(Oxford) 2008; 10: 77–82.
Google Scholar4. Reddy, SB, Patel, T. Current approaches to the diagnosis and treatment of cholangiocarcinoma. Curr Gastroenterol Rep 2006; 8: 30–37.
Google Scholar |
Crossref |
Medline5. Ho, J, Curley, SA. Diagnosis and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer Treat Res 2016; 168: 121–163.
Google Scholar |
Crossref |
Medline6. Li, Y, Li, DJ, Chen, J, et al. Application of joint detection of AFP, CA19–9, CA125 and CEA in identification and diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16: 3451–3455.
Google Scholar |
Crossref |
Medline7. Ohuchi, N, Takahashi, K, Matoba, N, et al. Comparison of serum assays for TAG-72, CA19–9 and CEA in gastrointestinal carcinoma patients. Jpn J Clin Oncol 1989; 19: 242-248.
Google Scholar |
Medline |
ISI8. Høgdall, D, Lewinska, M, Andersen, JB. Desmoplastic tumor microenvironment and immunotherapy in cholangiocarcinoma. Trends Cancer 2018; 4: 239–255.
Google Scholar |
Crossref |
Medline9. Murakami, S, Motohashi, H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic Biol Med 2015; 88: 168-178.
Google Scholar |
Crossref |
Medline10. Dottin, RP, Bodduluri, SR, Doody, JF, et al. Signal transduction and gene expression in Dictyostelium discoideum. Dev Genet 1991; 12: 2–5.
Google Scholar |
Crossref |
Medline11. Long, TT, Liu, ZJ, Zhou, X, et al. Identification of differentially expressed genes and enriched pathways in lung cancer using bioinformatics analysis. Mol Med Rep 2019; 19: 2029–2040.
Google Scholar |
Medline12. Yin, L, Yan, J, Wang, YY, et al. TIGD1, A gene of unknown function, involves cell-cycle progression and correlates with poor prognosis in human cancer. J Cell Biochem 2019; 120: 9758–9767.
Google Scholar |
Crossref |
Medline13. Zhou, M, Zhu, YB, Hou, RX, et al. Identification of candidate genes for the diagnosis and treatment of cholangiocarcinoma using a bioinformatics approach. Oncol Lett 2019; 18: 5459-5467.
Google Scholar |
Medline14. Taylor, V, Welcher, AA, Program, AE, et al. Epithelial membrane protein-1, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. J Biol Chem 1995; 270: 28824–28833.
Google Scholar |
Crossref |
Medline |
ISI15. Wang, MF, Liu, TY, Hu, XW, et al. Epithelial membrane protein-1, peripheral myelin protein 22, and lens membrane protein 20 define a novel gene family. Panminerva Med 2020; 62: 150–154.
Google Scholar |
Crossref |
Medline16. Jain, A, Tindell, CA, Laux, I, et al. Epithelial membrane protein-1 is a biomarker of gefitinib resistance. Proc Natl Acad Sci U S A 2005; 102: 11858–11863.
Google Scholar |
Crossref |
Medline |
ISI17. Khan, SA, Tavolari, S, Brandi, G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int 2019; 1: 19–31.
Google Scholar |
Crossref18. Fried, B, Abruzzi, A. Food-borne trematode infections of humans in the United States of America. Parasitol Res 2010; 106: 1263–1280.
Google Scholar |
Crossref |
Medline19. Loosen, SH, Vucur, M, Trautwein, C, et al. Circulating biomarkers for cholangiocarcinoma. Dig Dis 2018; 36: 281–288.
Google Scholar |
Crossref |
Medline20. Hui, CK, Yuen, MF, Tso, WK, et al. Cholangiocarcinoma in liver cirrhosis. J Gastroenterol Hepatol 2003; 18: 337-341.
Google Scholar |
Crossref |
Medline21. Xiang, S, Lau, WY, Chen, XP. Hilar cholangiocarcinoma: controversies on the extent of surgical resection aiming at cure. Int J Colorectal Dis 2015; 30: 159–171.
Google Scholar |
Crossref |
Medline22. Becker, NS, Rodriguez, JA, Barshes, NR, et al. Outcomes analysis for 280 patients with cholangiocarcinoma treated with liver transplantation over an 18-year period. J Gastrointest Surg 2008; 12: 117–122.
Google Scholar |
Crossref |
Medline23. Ariës, IM, Jerchel, IS, Dungen, RESR, et al. EMP1, A novel poor prognostic factor in pediatric leukemia regulates prednisolone resistance, cell proliferation, migration and adhesion. Leukemia 2014; 28: 1828–1837.
Google Scholar |
Crossref |
Medline24. Lai, SY, Wang, GH, Cao, XN, et al. HEMP-1 promotes tumorigenesis of NSCLC through PI3K/AKT pathway. J Huazhong Univ Sci Technolog Med Sci 2012; 32: 832–838.
Google Scholar |
Crossref25. Wang, YW, Cheng, HL, Ding, YR, et al. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868: 199–211.
Google Scholar |
Crossref |
Medline26. Wang, JX, Li, XT, Wu, HB, et al. EMP1 Regulates cell proliferation, migration, and stemness in gliomas through PI3K-AKT signaling and CD44. J Cell Biochem 2019; 120: 17142–17150.
Google Scholar |
Crossref |
Medline27. Wang, MF, Liu, TY, Hu, XW, et al. EMP1 Promotes the malignant progression of osteosarcoma through the IRX2/MMP9 axis. Panminerva Med 2020; 62: 150–154.
Google Scholar |
Crossref |
Medline28. Sun, GG, Zhao, G, Lu, YF, et al. Association of EMP1 with gastric carcinoma invasion, survival and prognosis. Int J Oncol 2014; 45: 1091–1098.
Google Scholar |
Crossref |
Medline29. Sun, GG, Wang, YD, Cui, DW, et al. Epithelial membrane protein 1 negatively regulates cell growth and metastasis in colorectal carcinoma. World J Gastroenterol 2014; 20: 4001–4010.
Google Scholar |
Crossref |
Medline30. Sun, GG, Wang, YD, Cui, DW, et al. EMP1 Regulates caspase-9 and VEGFC expression and suppresses prostate cancer cell proliferation and invasion. Tumour Biol 2014; 35: 3455–3462.
Google Scholar |
Crossref |
Medline31. Sun, GG, Yang, YD, Lu, YF, et al. EMP1, A member of a new family of antiproliferative genes in breast carcinoma. Tumour Biol 2014; 35: 3347–3354.
Google Scholar |
Crossref |
Medline32. He, CB, Zhang, Y, Song, YD, et al. Preoperative CEA levels are supplementary to CA19-9 levels in predicting prognosis in patients with resectable intrahepatic cholangiocarcinoma. J Cancer 2018; 9: 3117–3128.
Google Scholar |
Crossref |
Medline33. Fang, TY, Wang, H, Wang, YF, et al. Clinical significance of preoperative serum CEA, CA125, and CA19-9 levels in predicting the resectability of cholangiocarcinoma. Dis Markers 2019; 2019: 6016931.
Google Scholar |
Crossref |
Medline34. Tang, YT, Huang, YY, Zheng, L, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 2017; 40: 834–844.
Google Scholar |
Crossref |
Medline35. Arbelaiz, A, Azkargorta, M, Krawczyk, M, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2017; 66: 1125–1143.
Google Scholar |
Crossref |
Medline
Comments (0)