1. Louis David, N, Ohgaki, H, Otmar, D, Wiestler, WKC, eds. WHO Classification of Tumours of the Central Nervous System. Revised 4th ed. Lyon, France: IARC; 2016.
Google Scholar2. Taylor, MD, Northcott, PA, Korshunov, A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012; 123(4):465–472.
Google Scholar |
Crossref |
Medline |
ISI3. Zhukova, N, Ramaswamy, V, Remke, M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013; 31(23):2927–2935.
Google Scholar |
Crossref |
Medline4. Sharma, S, Kelly, TK, Jones, PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1):27–36.
Google Scholar |
Crossref |
Medline |
ISI5. Jones, PA, Issa, J-PJ, Baylin, S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016; 17(10):630–641.
Google Scholar |
Crossref |
Medline6. Batora, NV, Sturm, D, Jones, DTW, Kool, M, Pfister, SM, Northcott, PA. Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience. 2014; 264:171–185.
Google Scholar |
Crossref |
Medline7. Preusser, M, Berghoff, AS, Manzl, C, et al. Clinical Neuropathology practice news 1-2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin Neuropathol. 2014; 33(1):6–14.
Google Scholar |
Crossref |
Medline8. Reifenberger, G, Hentschel, B, Felsberg, J, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012; 131(6):1342–1350.
Google Scholar |
Crossref |
Medline |
ISI9. Berghoff, AS, Kiesel, B, Widhalm, G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015; 17(8):1064–1075.
Google Scholar |
Crossref |
Medline10. Yamamura, K, Kosumi, K, Baba, Y, et al. LINE-1 methylation level and prognosis in pancreas cancer: pyrosequencing technology and literature review. Surg Today. 2017; 47(12):1450–1459.
Google Scholar |
Crossref |
Medline11. Singer, BD. A practical guide to the measurement and analysis of DNA methylation. Am J Respir Cell Mol Biol. 2019; 61(4):417–428.
Google Scholar |
Crossref |
Medline12. Northcott, PA, Shih, DJH, Remke, M, et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 2012; 123(4):615–626.
Google Scholar |
Crossref |
Medline13. Hovestadt, V, Jones, DTW, Picelli, S, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014; 510(7506):537–541.
Google Scholar |
Crossref |
Medline |
ISI14. Roversi, FM, Olalla Saad, ST, Machado-Neto, JA. Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomed Pharmacother. 2018; 101(October 2017):278–286.
Google Scholar |
Crossref |
Medline15. Hwang, S, Kim, HE, Min, M, et al. Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma. J Invest Dermatol. 2015; 135(9):2283–2291.
Google Scholar |
Crossref |
Medline16. Kongkham, PN, Northcott, PA, Ra, YS, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008; 68(23):9945–9953.
Google Scholar |
Crossref |
Medline17. Ramaswamy, V, Remke, M, Bouffet, E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016; 131(6): 821–831.
Google Scholar |
Crossref |
Medline18. Seget-Trzensiok, K, Bernhard, SV, Kuffer, C, et al. USP28 and SPINT2 mediate cell cycle arrest after whole genome doubling. bioRxiv. 2020. doi:10.1101/2020.09.18.303834
Google Scholar19. Triscott, J, Yip, S, Johnston, D, et al. Histologic correlates of molecular group 4 pediatric medulloblastoma: a retrospective Canadian review. Pediatr Dev Pathol. 2021; 24(4): 309–317.
Google Scholar |
SAGE Journals20. Nakahara, Y, Northcott, PA, Li, M, et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia. 2010; 12(1):20–27.
Google Scholar |
Crossref |
Medline21. Cohen, M, Kicheva, A, Ribeiro, A, et al. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun. 2015; 6(1):6709.
Google Scholar |
Crossref |
Medline22. Diede, SJ, Guenthoer, J, Geng, LN, et al. DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences. Proc Natl Acad Sci U S A. 2010; 107(1):234–239.
Google Scholar |
Crossref |
Medline23. Jones, DTW, Jäger, N, Kool, M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012; 488(7409):100–105.
Google Scholar |
Crossref |
Medline |
ISI24. Pritchard, JI, Olson, JM. Methylation of PTCH1, the patched-1 gene, in a panel of primary medulloblastomas. Cancer Genet Cytogenet. 2008; 180(1):47–50.
Google Scholar |
Crossref |
Medline25. Pfister, S, Schlaeger, C, Mendrzyk, F, et al. Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res. 2007; 35(7):e51.
Google Scholar |
Crossref |
Medline26. Gordon, M, Baksh, S. RASSF1A: Not a prototypical Ras effector. Small GTPases. 2011; 2(3):1–10.
Google Scholar |
Crossref |
Medline27. Lusher, ME, Lindsey, JC, Latif, F, Pearson, ADJ, Ellison, DW, Clifford, SC. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res. 2002; 62(20):5906–5911.
Google Scholar |
Medline28. Inda, MDM, Castresana, JS. RASSF1A promoter is highly methylated in primitive neuroectodermal tumors of the central nervous system. Neuropathology. 2007; 27(4):341–346.
Google Scholar |
Crossref |
Medline29. Horiguchi, K, Tomizawa, Y, Tosaka, M, et al. Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene. 2003; 22(49):7862–7865.
Google Scholar |
Crossref |
Medline30. Harada, K, Toyooka, S, Maitra, A, et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene. 2002; 21(27):4345–4349.
Google Scholar |
Crossref |
Medline31. De Fraipont, F, Levallet, G, Creveuil, C, et al. An apoptosis methylation prognostic signature for early lung cancer in the IFCT-0002 trial. Clin Cancer Res. 2012; 18(10):2976–2986.
Google Scholar |
Crossref |
Medline32. Fendri, A, Masmoudi, A, Khabir, A, et al. Inactivation of RASSF1A, RARβ2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009; 8(5):444–451.
Google Scholar |
Crossref |
Medline33. Zhang, HY, Rumilla, KM, Jin, L, et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine. 2006; 30(3):299–306.
Google Scholar |
Crossref |
Medline34. Sinha, R, Hussain, S, Mehrotra, R, et al. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population. PLoS One. 2013; 8(4):1–8.
Google Scholar |
Crossref35. García-Gutiérrez, L, McKenna, S, Kolch, W, Matallanas, D. RASSF1A tumour suppressor: target the network for effective cancer therapy. Cancers (Basel). 2020; 12(1):1–22.
Google Scholar |
Crossref36. Bin, Y, Ding, Y, Xiao, W, Liao, A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta. 2020; 504(September 2019):98–108.
Google Scholar |
Crossref |
Medline37. Grawenda, AM, O’Neill, E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer. 2015; 113(3):372–381.
Google Scholar |
Crossref |
Medline38. Simon, JA, Lange, CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res—Fundam Mol Mech Mutagen. 2008; 647(1–2):21–29.
Google Scholar |
Crossref |
Medline |
ISI39. Tsang, DPF, Cheng, ASL. Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol. 2011; 26(1):19–27.
Google Scholar |
Crossref |
Medline40. Robinson, G, Parker, M, Kranenburg, TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012; 488(7409):43–48.
Google Scholar |
Crossref |
Medline |
ISI41. Alimova, I, Venkataraman, S, Harris, P, et al. Targeting the enhancer of zeste homologue 2 in medulloblastoma. Int J Cancer. 2012; 131(8):1800–1809.
Google Scholar |
Crossref |
Medline
Comments (0)