1.
Kirkendall, DT, Garrett, WE. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997;7(2):62–6.
Google Scholar2.
Wang, JH . Mechanobiology of tendon. J Biomech. 2006; 39(9):1563–82.
Google Scholar |
Crossref3.
Somaiah, C, Kumar, A, Mawrie, D, Sharma, A, Patil, SD, Bhattacharyya, J, Swaminathan, R, Jaganathan, BG. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS ONE. 2015; 10(12):e0145068.
Google Scholar |
Crossref |
Medline4.
Merkel, JR, DiPaolo, BR, Hallock, GG, Rice, DC. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med. 1988;187(4):493–7.
Google Scholar |
SAGE Journals5.
Volk, SW, Wang, Y, Mauldin, EA, Liechty, KW, Adams, SL. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs. 2011;194(1):25–37.
Google Scholar |
Crossref6.
Hanson, AN, Bentley, JP. Quantitation of type I to type III collagen ratios in small samples of human tendon, blood vessels, and atherosclerotic plaque. Anal Biochem. 1983;130(1):32–40.
Google Scholar |
Crossref |
Medline7.
Miller, EJ. Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem. 1976;13(3):165–92.
Google Scholar |
Crossref8.
Birk, DE, Mayne, R. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol. 1997;72(4):352–61.
Google Scholar9.
Eriksen, HA, Pajala, A, Leppilahti, J, Risteli, J. Increased content of type III collagen at the rupture site of human Achilles tendon. J Orthop Res. 2002;20(6):1352–7.
Google Scholar |
Crossref10.
Pajala, A, Melkko, J, Leppilahti, J, Ohtonen, P, Soini, Y, Risteli, J. Tenascin-C and type I and III collagen expression in total Achilles tendon rupture. An immunohistochemical study. Histol Histopathol. 2009;24(10):1207–11.
Google Scholar11.
Sharma, P, Maffulli, N. The future: rehabilitation, gene therapy, optimization of healing. Foot Ankle Clin. 2005; 10(2):383–97.
Google Scholar |
Crossref12.
Thankam, FF, Evan, DK, Agrawal, DK, Dilisio, MF. Collagen type III content of the long head of the biceps tendon as an indicator of glenohumeral arthritis. Mol Cell Biochem. 2019;454(1–2):25–31.
Google Scholar |
Crossref13.
Lui, PP, Chan, LS, Lee, YW, Fu, SC, Chan, KM. Sustained expression of proteoglycans and collagen type III/type I ratio in a calcified tendinopathy model. Rheumatology. 2010;49(2):231–9.
Google Scholar |
Crossref14.
Constantine, VS, Mowry, RW. Selective staining of human dermal collagen. II. The use of picrosirius red F3BA with polarization microscopy. J Invest Dermatol. 1968;50(5):419–23.
Google Scholar |
Crossref15.
Kvasnicka, HM, Beham-Schmid, C, Bob, R, Dirnhofer, S, Hussein, K, Kreipe, H, Kremer, M, Schmitt-Graeff, A, Schwarz, S, Thiele, J, Werner, M, Stein, H. Problems and pitfalls in grading of bone marrow fibrosis, collagen deposition and osteosclerosis — a consensus-based study. Histopathology. 2016;68(6):905–15.
Google Scholar |
Crossref16.
James, J, Bosch, KS, Aronson, DC, Houtkooper, JM. Sirius red histophotometry and spectrophotometry of sections in the assessment of the collagen content of liver tissue and its application in growing rat liver. Liver. 1990;10(1):1–5.
Google Scholar |
Crossref17.
Junqueira, LC, Bignolas, G, Brentani, RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979;11(4):447–55.
Google Scholar |
Crossref |
Medline18.
Junquiera, LC, Junqueira, LC, Brentani, RR. A simple and sensitive method for the quantitative estimation of collagen. Anal Biochem. 1979;94(1):96–9.
Google Scholar19.
Malkusch, W, Rehn, B, Bruch, J. Advantages of Sirius Red staining for quantitative morphometric collagen measurements in lungs. Exp Lung Res. 1995;21(1):67–77.
Google Scholar |
Crossref20.
Segnani, C, Ippolito, C, Antonioli, L, Pellegrini, C, Blandizzi, C, Dolfi, A, Bernardini, N. Histochemical detection of collagen fibers by sirius red/fast green is more sensitive than van gieson or sirius red alone in normal and inflamed rat colon. PLoS ONE. 2015;10(12):e0144630.
Google Scholar |
Crossref21.
Junqueira, LC, Montes, GS, Bezerra, MS. Do Schwann cells produce collagen type III? Experientia. 1979;35(1):114.
Google Scholar |
Crossref22.
Montes, GS, Junqueira, LC. The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz. 1991;86:1–11.
Google Scholar |
Crossref |
Medline23.
Junqueira, LC, Cossermelli, W, Brentani, R. Differential staining of collagens type I, II and III by Sirius Red and polarization microscopy. Arch Histol Jpn. 1978;41(3):267–74.
Google Scholar |
Crossref |
Medline24.
Majewski, M, Betz, O, Ochsner, PE, Liu, F, Porter, RM, Evans, CM. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther. 2008;15(16): 1139–46.
Google Scholar |
Crossref25.
Sugiyama, Y, Naito, K, Goto, K, Kojima, Y, Furuhata, A, Igarashi, M, Nagaoka, I, Kaneko, K. Effect of aging on the tendon structure and tendon-associated gene expression in mouse foot flexor tendon. Biomed Rep. 2019;10(4):238–44.
Google Scholar26.
Praktiknjo, M, Lehmann, J, Nielsen, MJ, Schierwagen, R, Uschner, FE, Meyer, C, Thomas, D, Strassburg, CP, Bendtsen, F, Moller, S, Krag, A, Karsdal, MA, Leeming, DJ, Trebicka, J. Acute decompensation boosts hepatic collagen type III deposition and deteriorates experimental and human cirrhosis. Hepatol Commun. 2018;2(2):211–22.
Google Scholar |
Crossref27.
Brown, SR, Melman, L, Jenkins, E, Deeken, C, Frisella, MM, Brunt, LM, Eagon, JC, Matthews, BD. Collagen type I:III ratio of the gastroesophageal junction in patients with paraesophageal hernias. Surg Endosc. 2011;25(5): 1390–4.
Google Scholar |
Crossref28.
Kumari, K, Ghosh, S, Patil, S, Augustine, D, Samudrala Venkatesiah, S, Rao, RS. Expression of type III collagen correlates with poor prognosis in oral squamous cell carcinoma. J Investig Clin Dent. 2017;8(4):e12253.
Google Scholar |
Crossref29.
Lattouf, R, Younes, R, Lutomski, D, Naaman, N, Godeau, G, Senni, K, Changotade, S. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62(10):751–8.
Google Scholar |
SAGE Journals30.
Whittaker, P, Kloner, RA, Boughner, DR, Pickering, JG. Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res Cardiol. 1994;89(5):397–410.
Google Scholar |
Crossref |
Medline31.
Dayan, D, Hiss, Y, Hirshberg, A, Bubis, JJ, Wolman, M. Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers? Histochemistry. 1989;93(1):27–9.
Google Scholar |
Crossref32.
Wolman, M, Kasten, FH. Polarized light microscopy in the study of the molecular structure of collagen and reticulin. Histochemistry. 1986;85(1):41–9.
Google Scholar |
Crossref33.
Puchtler, H, Waldrop, FS, Valentine, LS. Polarization microscopic studies of connective tissue stained with picro-sirius red FBA. Beitr Pathol. 1973;150(2):174–87.
Google Scholar |
Crossref34.
Pierard, GE. Sirius red polarization method is useful to visualize the organization of connective tissues but not the molecular composition of their fibrous polymers. Matrix. 1989;9(1):68–71.
Google Scholar |
Crossref35.
van Wyk, CW, Philips, VM. Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers? J Oral Pathol Med. 1991; 20(2):96.
Google Scholar36.
Coleman, R. Picrosirius red staining revisited. Acta Histochem. 2011;113(3):231–3.
Google Scholar |
Crossref37.
Gadd, VL. Combining immunodetection with histochemical techniques: the effect of heat-induced antigen retrieval on picro-sirius red staining. J Histochem Cytochem. 2014;62(12):902–6.
Google Scholar |
SAGE Journals38.
Whittaker, P, Canham, PB. Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy. Matrix. 1991;11(1):56–62.
Google Scholar |
Crossref39.
Scarano, A, Iezzi, G, Piattelli, A. Common fixatives in hard-tissue histology. In: An, YH, Martin, KL, editors. Handbook of histology methods for bone and cartilage. Totowa, NJ: Humana Press; 2010. p. 159–65.
Google Scholar40.
Howat, WJ, Wilson, BA. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods. 2014;70(1):12–9.
Google Scholar |
Crossref41.
Bedossa, P, Bacci, J, Lemaigre, G, Martin, E. Effects of fixation and processing on the immunohistochemical visualization of type-I, -III and -IV collagen in paraffin-embedded liver tissue. Histochemistry. 1987;88(1):85–9.
Google Scholar |
Crossref42.
Gala, JL, Chenut, F, Hong, KB, Rodhain, J, Camby, P, Philippe, M, Scheiff, JM. A panel of antibodies for the immunostaining of Bouin’s fixed bone marrow trephine biopsies. J Clin Pathol. 1997;50(6):521–4.
Google Scholar |
Crossref
Comments (0)