Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users

Abercrombie, D. (1967). Elements of general phonetics (Vol. 203). Edinburgh University Press.
Google Scholar Adank, P., Janse, E. (2009). Perceptual learning of time-compressed and natural fast speech. The Journal of the Acoustical Society of America, 126(5), 2649–2659. https://doi.org/10.1121/1.3216914
Google Scholar | Crossref | Medline | ISI Ashida, G., Nogueira, W. (2018). Spike-conducting integrate-and-fire model. ENeuro, 5(4). https://doi.org/10.1523/ENEURO.0112-18.2018
Google Scholar | Crossref | Medline Assmann, P., Summerfield, Q. (2004). The perception of speech under adverse conditions. In Steven Greenberg, William A. Ainsworth, Arthur N. Popper & Richard R. Fay (eds.), Speech processing in the auditory system (pp. 231–308). Springer. https://doi.org/10.1007/0-387-21575-1_5
Google Scholar Baddeley, A. D., Emslie, H., Nimmo-Smith, I. (1992). The speed and capacity of language-processing test. Thames Valley Test Company.
Google Scholar Baer, T., Moore, B. C. J., Gatehouse, S. (1993). Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: Effects on intelligibility, quality, and response times. Journal of Rehabilitation Research and Development, 30(1), 49–72.
Google Scholar | Medline Başkent, D., Gaudrain, E., Tamati, T. N., Wagner, A. (2016). Perception and psychoacoustics of speech in cochlear implant users. In Anthony T. Cacace, Emile de Kleine, Avril Genene Holt & Pim van Dijk (eds.), Scientific foundations of audiology: Perspectives from physics, biology, modeling, and medicine (pp. 285–319). Plural Publishing, Inc.
Google Scholar Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Google Scholar | Crossref | ISI Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.
Google Scholar | Crossref Boëx, C., de Balthasar, C., Kós, M.-I., Pelizzone, M. (2003). Electrical field interactions in different cochlear implant systems. The Journal of the Acoustical Society of America, 114(4), 2049–2057. https://doi.org/10.1121/1.1610451
Google Scholar | Crossref | Medline Bonthuis, M., van Stralen, K. J., Verrina, E., Edefonti, A., Molchanova, E. A., Hokken-Koelega, A. C., Schaefer, F., Jager, K. J. (2012). Use of national and international growth charts for studying height in European children: Development of up-to-date European height-for-age charts. PLoS One, 7(8), e42506.
Google Scholar | Crossref | Medline Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica United with Acustica, 86(1), 117–128.
Google Scholar Brungart, D. S. (2001). Informational and energetic masking effects in the perception of two simultaneous talkers. The Journal of the Acoustical Society of America, 109(3), 1101–1109. https://doi.org/10.1121/1.1345696
Google Scholar | Crossref | Medline | ISI Büchner, A., Frohne, C., Battmer, R.-D., Lenarz, T. (2005). Investigation of stimulation rates between 500 and 5000 pps with the Clarion 1.2, Nucleus CI24 and Clarion CII devices. Cochlear Implants International, 6(S1), 35–37. https://doi.org/10.1002/cii.280
Google Scholar | Crossref | Medline Carlyon, R. P., Shackleton, T. M. (1994). Comparing the fundamental frequencies of resolved and unresolved harmonics: Evidence for two pitch mechanisms? The Journal of the Acoustical Society of America, 95(6), 3541–3554. https://doi.org/10.1121/1.409971
Google Scholar | Crossref | ISI Chatterjee, M., Peng, S.-C. (2008). Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition. Hearing Research, 235(1–2), 143–156. https://doi.org/10.1016/j.heares.2007.11.004
Google Scholar | Crossref | Medline | ISI Chen, B., Shi, Y., Zhang, L., Sun, Z., Li, Y., Gopen, Q., Fu, Q.-J. (2020). Masking effects in the perception of multiple simultaneous talkers in normal-hearing and cochlear implant listeners. Trends in Hearing, 24, 1–12. https://doi.org/10.1177/2331216520916106
Google Scholar | SAGE Journals Chiba, T., Kajiyama, M. (1941). The vowel: Its nature and structure. Tokyo-Kaiseikan.
Google Scholar Cullington, H. E., Zeng, F.-G. (2008). Speech recognition with varying numbers and types of competing talkers by normal-hearing, cochlear-implant, and implant simulation subjects. The Journal of the Acoustical Society of America, 123(1), 450–461. https://doi.org/10.1121/1.2805617
Google Scholar | Crossref | Medline | ISI Darwin, C. J., Brungart, D. S., Simpson, B. D. (2003). Effects of fundamental frequency and vocal-tract length changes on attention to one of two simultaneous talkers. The Journal of the Acoustical Society of America, 114(5), 2913–2922. https://doi.org/10.1121/1.1616924
Google Scholar | Crossref | Medline | ISI De Balthasar, C., Boex, C., Cosendai, G., Valentini, G., Sigrist, A., Pelizzone, M. (2003). Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects. Hearing Research, 182(1), 77–87. https://doi.org/10.1016/S0378-5955(03)00174-6
Google Scholar | Crossref | Medline Di Nardo, W., Scorpecci, A., Giannantonio, S., Cianfrone, F., Paludetti, G. (2011). Improving melody recognition in cochlear implant recipients through individualized frequency map fitting. European Archives of Oto-Rhino-Laryngology, 268(1), 27–39. https://doi.org/10.1007/s00405-010-1335-7
Google Scholar | Crossref | Medline Duquesnoy, A. (1983). Effect of a single interfering noise or speech source upon the binaural sentence intelligibility of aged persons. The Journal of the Acoustical Society of America, 74(3), 739–743. https://doi.org/10.1121/1.389859
Google Scholar | Crossref | Medline | ISI El Boghdady, N., Başkent, D., Gaudrain, E. (2018). Effect of frequency mismatch and band partitioning on vocal tract length perception in vocoder simulations of cochlear implant processing. The Journal of the Acoustical Society of America, 143(6), 3505–3519. https://doi.org/10.1121/1.5041261
Google Scholar | Crossref | Medline El Boghdady, N., Gaudrain, E., Başkent, D. (2019). Does good perception of vocal characteristics relate to better speech-on-speech perception in cochlear implant users? The Journal of the Acoustical Society of America, 145(1), 417–439. https://doi.org/10.1121/1.5087693
Google Scholar | Crossref | Medline El Boghdady, N., Langner, F., Gaudrain, E., Başkent, D., Nogueira, W. (2020). Effect of spectral contrast enhancement on speech-on-speech intelligibility and voice cue sensitivity in cochlear implant users. Ear and Hearing, 42(2), 271–289. https://doi.org/10.1097/AUD.0000000000000936
Google Scholar | Crossref | Medline Fant, G. (1960). Acoustic theory of speech perception. Mouton.
Google Scholar Festen, J. M. (1993). Contributions of comodulation masking release and temporal resolution to the speech-reception threshold masked by an interfering voice. The Journal of the Acoustical Society of America, 94(3), 1295–1300. https://doi.org/10.1121/1.408156
Google Scholar | Crossref | Medline Festen, J. M., Plomp, R. (1990). Effects of fluctuating noise and interfering speech on the speech‐reception threshold for impaired and normal hearing. The Journal of the Acoustical Society of America, 88(4), 1725–1736. https://doi.org/10.1121/1.400247
Google Scholar | Crossref | Medline | ISI Fielden, C. A., Kluk, K., Boyle, P. J., McKay, C. M. (2015). The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation. The Journal of the Acoustical Society of America, 138(4), 2524–2536. https://doi.org/10.1121/1.4931910
Google Scholar | Crossref | Medline Fitch, W. T., Giedd, J. (1999). Morphology and development of the human vocal tract: A study using magnetic resonance imaging. The Journal of the Acoustical Society of America, 106(3), 1511–1522. https://doi.org/10.1121/1.427148
Google Scholar | Crossref | Medline | ISI Fitzgerald, M. B., Sagi, E., Morbiwala, T. A., Tan, C.-T., Svirsky, M. A. (2013). Feasibility of real-time selection of frequency tables in an acoustic simulation of a cochlear implant. Ear and Hearing, 34(6), 763–772. https://doi.org/10.1097/AUD.0b013e3182967534
Google Scholar | Crossref | Medline | ISI Fox, J., Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
Google Scholar Fraser, M., McKay, C. M. (2012). Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues. Hearing Research, 283(1–2), 59–69. https://doi.org/10.1016/j.heares.2011.11.009
Google Scholar | Crossref | Medline Friesen, L. M., Shannon, R. V., Başkent, D., Wang, X. (2001). Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. The Journal of the Acoustical Society of America, 110(2), 1150. https://doi.org/10.1121/1.1381538
Google Scholar | Crossref | Medline | ISI Frijns, J. H., Kalkman, R. K., Vanpoucke, F. J., Bongers, J. S., Briaire, J. J. (2009). Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: Evidence for two neural response modalities. Acta Oto-Laryngologica, 129(4), 433–439. https://doi.org/10.1080/00016480802610218
Google Scholar | Crossref | Medline Fu, Q.-J., Nogaki, G. (2005). Noise susceptibility of cochlear implant users: The role of spectral resolution and smearing. Journal of the Association for Research in Otolaryngology, 6(1), 19–27. https://doi.org/10.1007/s10162-004-5024-3
Google Scholar | Crossref | Medline | ISI Fu, Q.-J., Shannon, R. V. (1999). Effects of electrode configuration and frequency allocation on vowel recognition with the nucleus-22 cochlear implant. Ear and Hearing, 20(4), 332. https://doi.org/10.1097/00003446-199908000-00006
Google Scholar | Crossref | Medline Fu, Q.-J., Shannon, R. V. (2002). Frequency mapping in cochlear implants. Ear and Hearing, 23(4), 339–348. https://doi.org/10.1097/00003446-200208000-00009
Google Scholar | Crossref | Medline Fu, Q.-J., Shannon, R. V., Wang, X. (1998). Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing. The Journal of the Acoustical Society of America, 104(6), 3586–3596. https://doi.org/10.1121/1.423941
Google Scholar | Crossref | Medline | ISI Fuller, C. D., Gaudrain, E., Clarke, J. N., Galvin, J. J., Fu, Q.-J., Free, R. H., Başkent, D. (2014). Gender categorization is abnormal in cochlear implant users. Journal of the Association for Research in Otolaryngology, 15(6), 1037–1048. https://doi.org/10.1007/s10162-014-0483-7
Google Scholar | Crossref | Medline Gatehouse, S., Gordon, J. (1990). Response times to speech stimuli as measures of benefit from amplification. British Journal of Audiology, 24(1), 63–68. https://doi.org/10.3109/03005369009077843
Google Scholar | Crossref | Medline Gaudrain, E., Başkent, D. (2015). Factors limiting vocal-tract length discrimination in cochlear implant simulations. The Journal of the Acoustical Society of America, 137(3), 1298–1308. https://doi.org/10.1121/1.4908235
Google Scholar | Crossref | Medline Gaudrain, E., Başkent, D. (2018). Discrimination of voice pitch and vocal-tract length in cochlear implant users. Ear and Hearing, 39, 226–237. https://doi.org/10.1097/AUD.0000000000000480
Google Scholar | Crossref | Medline Grasmeder, M. L., Verschuur, C. A., Batty, V. B. (2014). Optimizing frequency-to-electrode allocation for individual cochlear implant users. The Journal of the Acoustical Society of America, 136(6), 3313–3324. https://doi.org/10.1121/1.4900831
Google Scholar | Crossref | Medline Green, D., Swets, J. (1966). Signal detection theory and psychophysics. Wiley.
Google Scholar Gustafsson, H.A. A., Arlinger, S. D. (1994). Masking of speech by amplitude-modulated noise. The Journal of the Acoustical Society of America, 95(1), 518–529. https://doi.org/10.1121/1.408346
Google Scholar | Crossref | Medline Hahlbrock, D. K.-H. (1953). Über Sprachaudiometrie und neue Wörterteste. Archiv für Ohren-, Nasen- und Kehlkopfheilkunde [On Speech Audiometry and New Word Tests], 162(5), 394–431. https://doi.org/10.1007/BF02105664

Comments (0)

No login
gif