1. Dahlhamer, J, Lucas, J, Zelaya, C, Nahin, R, Mackey, S, DeBar, L, Kerns, R, Von Korff, M, Porter, L, Helmick, C. Prevalence of chronic pain and high-impact chronic pain among adults – United States, 2016. MMWR Morb Mortal Wkly Rep 2018; 67: 1001–1006.
Google Scholar |
Crossref |
Medline2. Goldberg, DS, McGee, SJ. Pain as a global public health priority. BMC Public Health 2011; 11: 770–770.
Google Scholar |
Crossref |
Medline |
ISI3. Centers for Disease Control and Prevention . Annual surveillance report of drug-related risks and outcomes – United States (Surveillance Special Report 2pdf icon).
Washington, DC:
Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, 2018,
Google Scholar4. Wide-Ranging Online Data for Epidemiologic Research . Atlanta, GA: CDC, National Center for Health Statistics, 2020.
Google Scholar5. Babcock, DT, Landry, C, Galko, MJ. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr Biol 2009; 19: 799–806.
Google Scholar |
Crossref |
Medline6. Viswanath, V, Story, GM, Peier, AM, Petrus, MJ, Lee, VM, Hwang, SW, Patapoutian, A, Jegla, T. Opposite thermosensor in fruitfly and mouse. Nature 2003; 423: 822–823.
Google Scholar |
Crossref |
Medline |
ISI7. Xu, SY, Cang, CL, Liu, XF, Peng, YQ, Ye, YZ, Zhao, ZQ, Guo, AK. Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene. Genes Brain Behav 2006; 5: 602–613.
Google Scholar |
Crossref |
Medline |
ISI8. Tracey, WD, Wilson, RI, Laurent, G, Benzer, S. Painless, a Drosophila gene essential for nociception. Cell 2003; 113: 261–273.
Google Scholar |
Crossref |
Medline9. Babcock, DT, Shi, S, Jo, J, Shaw, M, Gutstein, HB, Galko, MJ. Hedgehog signaling regulates nociceptive sensitization. Curr Biol 2011; 21: 1525–1533.
Google Scholar |
Crossref |
Medline10. Im, SH, Takle, K, Jo, J, Babcock, D, Ma, Z, Xiang, Y, Galko, M. Tachykinin acts upstream of autocrine hedgehog signaling during nociceptive sensitization in Drosophila. eLife 2015; 4: e10735.
Google Scholar |
Crossref |
Medline11. Follansbee, TL, Gjelsvik, KJ, Brann, CL, McParland, A, Longhurst, C, Galko, M, Ganter, G. Drosophila nociceptive sensitization requires BMP signaling via the canonical SMAD pathway. J Neurosci 2017; 37: 8524–8533.
Google Scholar |
Crossref |
Medline12. Gjelsvik, KJ, Follansbee, TL, Ganter, GK. Bone morphogenetic protein glass bottom boat (BMP5/6/7/8) and its receptor wishful thinking (BMPRII) are required for injury-induced allodynia in Drosophila. Mol Pain 2018; 14: 1744806918802703.
Google Scholar |
SAGE Journals |
ISI13. Brann, CL, Moulton, JK, Ganter, GK. Glypicans dally and dally-like control injury-induced allodynia in Drosophila. Mol Pain 2019; 15: 1744806919856777–1744806919856777.
Google Scholar |
SAGE Journals |
ISI14. Affolter, M, Basler, K. The decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 2007; 8: 663–674.
Google Scholar |
Crossref |
Medline |
ISI15. O'Connor, MB, Umulis, D, Othmer, HG, Blair, SS. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development 2006; 133: 183–193.
Google Scholar |
Crossref |
Medline16. Ramel, M-C, Hill, CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586: 1929–1941.
Google Scholar |
Crossref |
Medline17. Raftery, LA, Umulis, DM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol 2012; 24: 158–165.
Google Scholar |
Crossref |
Medline18. Ashe, HL. BMP signalling: synergy and feedback create a step gradient. Curr Biol 2005; 15: R375–377.
Google Scholar |
Crossref |
Medline19. Shravage, BV, Altmann, G, Technau, M, Roth, S. The role of dpp and its inhibitors during eggshell patterning in Drosophila. Development 2007; 134: 2261–2271.
Google Scholar |
Crossref |
Medline20. Yakoby, N, Lembong, J, Schüpbach, T, Shvartsman, SY. Drosophila eggshell is patterned by sequential action of feedforward and feedback loops. Development 2008; 135: 343–351.
Google Scholar |
Crossref |
Medline21. Ozkaynak, E, Rueger, DC, Drier, EA, Corbett, C, Ridge, RJ, Sampath, TK, Oppermann, H. OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 1990; 9: 2085–2093.
Google Scholar |
Crossref |
Medline |
ISI22. Jones, CM, Lyons, KM, Hogan, BL. Involvement of bone morphogenetic protein-4 (BMP-4) and vgr-1 in morphogenesis and neurogenesis in the mouse. Development 1991; 111: 531–542.
Google Scholar |
Crossref |
Medline |
ISI23. Chen, Y, Riese, MJ, Killinger, MA, Hoffmann, FA. Genetic screen for modifiers of Drosophila decapentaplegic signaling identifies mutations in punt, mothers against dpp and the BMP-7 homologue, 60A. Development 1998; 125: 1759–1768.
Google Scholar |
Crossref |
Medline24. Campbell, G, Tomlinson, A. Transducing the dpp morphogen gradient in the wing of Drosophila: regulation of dpp targets by brinker. Cell 1999; 96: 553–562.
Google Scholar |
Crossref |
Medline25. Jaźwińska, A, Rushlow, C, Roth, S. The role of brinker in mediating the graded response to dpp in early Drosophila embryos. Development 1999; 126: 3323–3334.
Google Scholar |
Crossref |
Medline26. Gafner, L, Dalessi, S, Escher, E, Pyrowolakis, G, Bergmann, S, Basler, K. Manipulating the sensitivity of signal-induced repression: quantification and consequences of altered brinker gradients. PLoS One 2013; 8: e71224–e71224.
Google Scholar |
Crossref27. Chayengia, M, Veikkolainen, V, Jevtic, M, Pyrowolakis, G. Sequence environment of BMP-dependent activating elements controls transcriptional responses to dpp signaling in Drosophila. Development 2019; 146: dev176107.
Google Scholar |
Crossref |
Medline28. Maekawa, T, Sakura, H, Sudo, T, Ishii, S. Putative metal finger structure of the human immunodeficiency virus type 1 enhancer binding protein HIV-EP1. J Biol Chem 1989; 264: 14591–14593.
Google Scholar |
Crossref |
Medline29. Sampath, TK, Rashka, KE, Doctor, JS, Tucker, RF, Hoffmann, FM. Drosophila transforming growth factor beta superfamily proteins induce endochondral bone formation in mammals. Proc Natl Acad Sci U S A 1993; 90: 6004–6008.
Google Scholar |
Crossref |
Medline30. Padgett, RW, Wozney, JM, Gelbart, WM. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo. Proc Natl Acad Sci U S A 1993; 90: 2905–2909.
Google Scholar |
Crossref |
Medline31. Adams, CM, Anderson, MG, Motto, DG, Price, MP, Johnson, WA, Welsh, MJ. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J Cell Biol 1998; 140: 143–152.
Google Scholar |
Crossref |
Medline32. Ainsley, JA, Pettus, JM, Bosenko, D, Gerstein, CE, Zinkevich, N, Anderson, MG, Adams, CM, Welsh, MJ, Johnson, WA. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr Biol 2003; 13: 1557–1563.
Google Scholar |
Crossref |
Medline33. Kudron, MM, Victorsen, A, Gevirtzman, L, Hillier, LW, Fisher, WW, Vafeados, D, Kirkey, M, Hammonds, AS, Gersch, J, Ammouri, H, Wall, ML, Moran, J, Steffen, D, Szynkarek, M, Seabrook-Sturgis, S, Jameel, N, Kadaba, M, Patton, J, Terrell, R, Corson, M, Durham, TJ, Park, S, Samanta, S, Han, M, Xu, J, Yan, K-K, Celniker, SE, White, KP, Ma, L, Gerstein, M, Reinke, V, Waterston, RH. The ModERN resource: genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors. Genetics 2018; 208: 937–949.
Google Scholar |
Crossref |
Medline34. Iyer, EP, Iyer, SC, Sullivan, L, Wang, D, Meduri, R, Graybeal, LL, Cox, DN. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PLoS One 2013; 8: e72434.
Google Scholar |
Crossref |
Medline35. Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, J-Y, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682.
Google Scholar |
Crossref |
Medline |
ISI36. Arganda-Carreras, I, Fernández-González, R, Muñoz-Barrutia, A, Ortiz-De-Solorzano, C. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech 2010; 73: 1019–1029.
Google Scholar |
Crossref |
Medline |
ISI37. Doumpas, N, Ruiz ‐Romero, M, Blanco, E, Edgar, B, Corominas, M, Teleman, AA. Brk regulates wing disc growth in part via repression of myc expression. EMBO Rep 2013; 14: 261–268.
Google Scholar |
Crossref |
Medline38. McCloy, RA, Rogers, S, Caldon, CE, Lorca, T, Castro, A, Burgess, A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014; 13: 1400–1412.
Google Scholar |
Crossref |
Medline39. R Core Team . R: a language and environment for statistical computing.
Vienna:
R Foundation for Statistical Computing, 2020.
Google Scholar40. Grueber, WB, Jan, LY, Jan, YN. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002; 129: 2867–2878.
Google Scholar |
Crossref |
Medline41. Minami, M, Kinoshita, N, Kamoshida, Y, Tanimoto, H, Tabata, T. Brinker is a target of dpp in Drosophila that negatively regulates dpp-dependent genes. Nature 1999; 398: 242–246.
Google Scholar |
Crossref |
Medline42. Jaźwińska, A, Kirov, N, Wieschaus, E, Roth, S, Rushlow, C. The Drosophila gene brinker reveals a novel mechanism of dpp target gene regulation. Cell 1999 ; 96: 563–573.
Google Scholar |
Crossref |
Medline
Comments (0)