Apical Membrane Expression of Distinct Sulfated Glycans Is a Characteristic Feature of Ductules and Their Reactive and Neoplastic Counterparts

1. Nakanuma, Y, Hoso, M, Sanzen, T, Sasaki, M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech. 1997;38(6):552–70.
Google Scholar2. Sasaki, M, Ikeda, H, Nakanuma, Y. Expression profiles of MUC mucins and trefoil factor family (TFF) peptides in the intrahepatic biliary system: physiological distribution and pathological significance. Prog Histochem Cytochem. 2007;42(2):61–110.
Google Scholar | Crossref | Medline3. Hoshino, H, Ohta, M, Ito, M, Uchimura, K, Sakai, Y, Uehara, T, Low, S, Fukushima, M, Kobayashi, M. Apical membrane expression of distinct sulfated glycans represents a novel marker of cholangiolocellular carcinoma. Lab Invest. 2016;96(12):1246–55.
Google Scholar4. Maeno, S, Kondo, F, Sano, K, Takada, T, Asano, T. Morphometric and immunohistochemical study of cholangiolocellular carcinoma: comparison with non-neoplastic cholangiole, interlobular duct and septal duct. J Hepatobiliary Pancreat Sci. 2012;19(3):289–96.
Google Scholar5. Nakanuma, Y, Klimstra, DS, Komuta, M, Zen, Y. Intrahepatic cholangiocarcinoma. In: WHO Classification of Tumours Editorial Board, editors. Digestive system tumours. Lyon, France: International Agency for Research on Cancer; 2019, p. 254–9.
Google Scholar6. Sasaki, M, Nakanuma, Y, Ho, SB, Kim, YS. Increased MUC6 apomucin expression is a characteristic of reactive biliary epithelium in chronic viral hepatitis. J Pathol. 1998;185(2):191–8.
Google Scholar7. Bistrup, A, Bhakta, S, Lee, JK, Belov, YY, Gunn, MD, Zuo, FR, Huang, CC, Kannagi, R, Rosen, SD, Hemmerich, S. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol. 1999;145(4):899–910.
Google Scholar8. Hiraoka, N, Petryniak, B, Nakayama, J, Tsuboi, S, Suzuki, M, Yeh, JC, Izawa, D, Tanaka, T, Miyasaka, M, Lowe, JB, Fukuda, M. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewisx, an L-selectin ligand displayed by CD34. Immunity. 1999;11(1):79–89.
Google Scholar9. Tsutsumiuchi, M, Hoshino, H, Kogami, A, Tsutsumiuchi, T, Yokoyama, O, Akama, TO, Kobayashi, M. Preferential expression of sialyl 6’-sulfo N-acetyllactosamine-capped O-glycans on high endothelial venules in human peripheral lymph nodes. Lab Invest. 2019;99(10):1428–41.
Google Scholar10. Steward, M, Berezovskaya, Y, Zhou, H, Shediac, R, Sun, C, Miller, N, Rendle, PM. Recombinant, truncated B. circulans keratanase-II: description and characterisation of a novel enzyme for use in measuring urinary keratan sulphate levels via LC-MS/MS in Morquio A syndrome. Clin Biochem. 2015;48(12):796–802.
Google Scholar11. Fukuda, MN, Matsumura, G. Endo-β-galactosidase of Escherichia freundii. Purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein. J Biol Chem. 1976;251(20):6218–25.
Google Scholar12. Fukuda, MN. Purification and characterization of endo-β-galactosidase from Escherichia freundii induced by hog gastric mucin. J Biol Chem. 1981;256(8):3900–5.
Google Scholar13. Streeter, PR, Rouse, BT, Butcher, EC. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol. 1988;107(5):1853–62.
Google Scholar14. Yeh, JC, Hiraoka, N, Petryniak, B, Nakayama, J, Ellies, LG, Rabuka, D, Hindsgaul, O, Marth, JD, Lowe, JB, Fukuda, M. Novel sulfated lymphocyte homing receptors and their control by a core1 extension β1,3-N-acetylglucosaminyltransferase. Cell. 2001;105(7):957–69.
Google Scholar15. Kawabe, K, Tateyama, D, Toyoda, H, Kawasaki, N, Hashii, N, Nakao, H, Matsumoto, S, Nonaka, M, Matsumura, H, Hirose, Y, Morita, A, Katayama, M, Sakuma, M, Kawasaki, N, Furue, MK, Kawasaki, T. A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures. Glycobiology. 2013;23(3):322–36.
Google Scholar16. Nakao, H, Nagai, Y, Kojima, A, Toyoda, H, Kawasaki, N, Kawasaki, T. Binding specificity of R-10G and TRA-1-60/81, and substrate specificity of keratanase II studied with chemically synthesized oligosaccharides. Glycoconj J. 2017;34(6):789–95.
Google Scholar17. Wu, N, Silva, LM, Liu, Y, Zhang, Y, Gao, C, Zhang, F, Fu, L, Peng, Y, Linhardt, R, Kawasaki, T, Mulloy, B, Chai, W, Feizi, T. Glycan markers of human stem cells assigned with beam search arrays. Mol Cell Proteomics. 2019;18(10):1981–2002.
Google Scholar18. Hoshino, H, Foyez, T, Ohtake-Niimi, S, Takeda-Uchimura, Y, Michikawa, M, Kadomatsu, K, Uchimura, K. KSGal6ST is essential for the 6-sulfation of galactose within keratan sulfate in early postnatal brain. J Histochem Cytochem. 2014;62(2):145–56.
Google Scholar19. Tsutsumiuchi, T, Hoshino, H, Fujieda, S, Kobayashi, M. Induction of peripheral lymph node addressin in human nasal mucosa with eosinophilic chronic rhinosinusitis. Pathology. 2019;51(3):268–73.
Google Scholar20. Fujiwara, M, Kobayashi, M, Hoshino, H, Uchimura, K, Nakada, T, Masumoto, J, Sakai, Y, Fukuda, M, Nakayama, J. Expression of long-form N-acetylglucosamine-6-O-sulfotransferase 1 in human high endothelial venules. J Histochem Cytochem. 2012;60(5):397–407.
Google Scholar | SAGE Journals21. Gouw, AS, Clouston, AD, Theise, ND. Ductular reactions in human liver: diversity at the interface. Hepatology. 2011;54(5):1853–63.
Google Scholar22. Roskams, TA, Theise, ND, Balabaud, C, Bhagat, G, Bhathal, PS, Bioulac-Sage, P, Brunt, EM, Crawford, JM, Crosby, HA, Desmet, V, Finegold, MJ, Geller, SA, Gouw, AS, Hytiroglou, P, Knisely, AS, Kojiro, M, Lefkowitch, JH, Nakanuma, Y, Olynyk, JK, Park, YN, Portmann, B, Saxena, R, Scheuer, PJ, Strain, AJ, Thung, SN, Wanless, IR, West, AB. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6):1739–45.
Google Scholar23. Theise, ND, Crawford, JM, Nakanuma, Y, Quaglia, A. Canal of Hering loss is an initiating step for primary biliary cholangitis (PBC): a hypothesis. Med Hypotheses. 2020;140:109680.
Google Scholar24. Loke, SL, Leung, CY, Chiu, KY, Yau, WL, Cheung, KN, Ma, L. Localisation of CD10 to biliary canaliculi by immunoelectron microscopical examination. J Clin Pathol. 1990;43(8):654–6.
Google Scholar25. Röcken, C, Licht, J, Roessner, A, Carl-McGrath, S. Canalicular immunostaining of aminopeptidase N (CD13) as a diagnostic marker for hepatocellular carcinoma. J Clin Pathol. 2005;58(10):1069–75.
Google Scholar26. Fukuda, MN. Endo-β-galactosidases and keratanase. Curr Protoc Mol Biol. 2001; Chapter 17:Unit17.17B.
Google Scholar27. Liau, JY, Tsai, JH, Yuan, RH, Chang, CN, Lee, HJ, Jeng, YM. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol. 2014;27(8):1163–73.
Google Scholar28. Angata, K, Suzuki, M, Fukuda, M. Differential and cooperative polysialylation of the neural cell adhesion molecule by two polysialyltransferases, PST and STX. J Biol Chem. 1998;273(43):28524–32.
Google Scholar29. Remmers, N, Anderson, JM, Linde, EM, DiMaio, DJ, Lazenby, AJ, Wandall, HH, Mandel, U, Clausen, H, Yu, F, Hollingsworth, MA. Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin Cancer Res. 2013;19(8):1981–93.
Google Scholar30. Radhakrishnan, P, Dabelsteen, S, Madsen, FB, Francavilla, C, Kopp, KL, Steentoft, C, Vakhrushev, SY, Olsen, JV, Hansen, L, Bennett, EP, Woetmann, A, Yin, G, Chen, L, Song, H, Bak, M, Hlady, RA, Peters, SL, Opavsky, R, Thode, C, Qvortrup, K, Schjoldager, KT, Clausen, H, Hollingsworth, MA, Wandall, HH. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc Natl Acad Sci U S A. 2014;111(39):E4066–75.
Google Scholar31. Chou, CH, Huang, MJ, Chen, CH, Shyu, MK, Huang, J, Hung, JS, Huang, CS, Huang, MC. Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget. 2015;6(8):6123–35.
Google Scholar32. Shtutman, M, Zhurinsky, J, Simcha, I, Albanese, C, D’Amico, M, Pestell, R, Ben-Ze’ev, A. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96(10):5522–7.
Google Scholar33. Rajabi, H, Ahmad, R, Jin, C, Kosugi, M, Alam, M, Joshi, MD, Kufe, D. MUC1-C oncoprotein induces TCF7L2 transcription factor activation and promotes cyclin D1 expression in human breast cancer cells. J Biol Chem. 2012;287(13):10703–13.
Google Scholar34. Hildebrand, A, Beyer, K, Neubert, R, Garidel, P, Blume, A. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts. J Colloid Interface Sci. 2004;279(2):559–71.
Google Scholar35. Hofmann, AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–58.
Google Scholar

Comments (0)

No login
gif