1.
Schneider, BP, Miller, KD Angiogenesis of breast cancer. J Clin Oncol. 2005;23(8):1782-90.
Google Scholar |
Crossref2.
Cho, N, Jang, M, Lyou, CY, Park, JS, Choi, HY, Moon, WK. Distinguishing benign from malignant masses at breast US: combined US elastography and color Doppler US—influence on radiologist accuracy. Radiology. 2012;262(1):80-90. doi:
10.1148/radiol.11110886. Google Scholar |
Crossref |
Medline3.
Revzin, MV, Imanzadeh, A, Menias, C, Pourjabbar, S, Mustafa, A, Nezami, N, et al. Optimizing image quality when evaluating blood flow at Doppler US: a tutorial. Radiographics. 2019;39(5):1501-23. doi:
10.1148/rg.2019180055. Google Scholar |
Crossref4.
Mehta, TS, Raza, S, Baum, JK. Use of Doppler ultrasound in the evaluation of breast carcinoma. Semin Ultrasound CT MR. 2000;21(4):297-307. doi:
10.1016/s0887-2171(00)90024-6. Google Scholar |
Crossref |
Medline5.
Park, AY, Seo, BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography. 2018; 37:98-106.
Google Scholar |
Crossref |
Medline6.
Demené, C, Deffieux, T, Pernot, M, Osmanski, BF, Biran, V, Gennisson, JL, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. IEEE Trans Med Imaging. 2015;34(11):2271-85. doi:
10.1109/TMI.2015.2428634. Google Scholar |
Crossref |
Medline7.
Yongfeng, Z, Ping, Z, Wengang, L, Yang, S, Shuangming, T. Application of a novel microvascular imaging technique in breast lesion evaluation. Ultrasound Med Biol. 2016;42(9):2097-105. doi:
10.1016/j.ultrasmedbio.2016.05.010. Google Scholar |
Crossref |
Medline8.
Grand-Perret, V, Jacquet, JR, Leguerney, I, Benatsou, B, Grégoire, JM, Willoquet, G, et al. A novel microflow phantom dedicated to ultrasound microvascular measurements. Ultrason Imaging. 2018;40(5):325-38. doi:
10.1177/0161734618783975. Google Scholar |
SAGE Journals9.
Yoo, J, Je, BK, Choo, JY. Ultrasonographic demonstration of the tissue microvasculature in children: microvascular ultrasonography versus conventional color Doppler ultrasonography. Korean J Radiol. 2020;21(2):146-58. doi:
10.3348/kjr.2019.0500. Google Scholar |
Crossref10.
Kang, HJ, Lee, JM, Jeon, SK, Ryu, H, Yoo, J, Lee, JK, et al. Microvascular flow imaging of residual or recurrent hepatocellular carcinoma after transarterial chemoembolization: comparison with color/power Doppler imaging. Korean J Radiol. 2019;20(7):1114-23. doi:
10.3348/kjr.2018.0932. Google Scholar |
Crossref11.
World Medical Association . World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. doi:
10.1001/jama.2013.281053. Google Scholar |
Crossref12.
Mendelson, E, Bohm-Velez, M, Berg, W. ACR BI- RADS Ultrasound. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System. Reston, VA: American College of Radiology; 2013, pp. 1-153.
Google Scholar13.
Watanabe, T, Kaoku, S, Yamaguchi, T, Izumori, A, Konno, S, Okuno, T, et al. Multicenter prospective study of color Doppler ultrasound for breast masses: utility of our color Doppler method. Ultrasound Med Biol. 2019;45(6):1367-79. doi:
10.1016/j.ultrasmedbio.2019.01.021. Google Scholar |
Crossref14.
Svensson, WE, Pandian, AJ, Hashimoto, H. The use of breast ultrasound color Doppler vascular pattern morphology improves diagnostic sensitivity with minimal change in specificity. Ultraschall Med. 2010;31(5):466-74. doi:
10.1055/s-0028-1109478. Google Scholar |
Crossref |
Medline15.
Raza, S, Baum, JK. Solid breast lesions: evaluation with power Doppler US. Radiology. 1997;203(1):164-8.
Google Scholar |
Crossref |
Medline16.
Schroeder, RJ, Bostanjoglo, M, Rademaker, J, Maeurer, J, Felix, R. Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions. Eur Radiol. 2003;13:68-79.
Google Scholar |
Crossref |
Medline |
ISI17.
Bjaerum, S, Torp, H, Kristoffersen, K. Clutter filter design for ultrasound color flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(2):204-16. doi:
10.1109/58.985705. Google Scholar |
Crossref18.
Willemetz, JC, Nowicki, A, Meister, JJ, De Palma, F, Pante, G. Bias and variance in the estimate of the Doppler frequency induced by a wall motion filter. Ultrason Imaging. 1989;11(3): 215-25.
Google Scholar |
SAGE Journals19.
Park, AY, Seo, BK, Cha, SH, Yeom, SK, Lee, SW, Chung, HH. An innovative ultrasound technique for evaluation of tumor vascularity in breast cancers: superb micro-vascular imaging. J Breast Cancer. 2016;19(2):210-3. doi:
10.4048/jbc.2016.19.2.210. Google Scholar |
Crossref20.
Park, AY, Kwon, M, Woo, OH, Cho, KR, Park, EK, Cha, SH, et al. A prospective study on the value of ultrasound microflow assessment to distinguish malignant from benign solid breast masses: association between ultrasound parameters and histologic microvessel densities. Korean J Radiol. 2019;20(5):759-72. doi:
10.3348/kjr.2018.0515. Google Scholar |
Crossref21.
Park, AY, Seo, BK, Woo, OH, Jung, KS, Cho, KR, Park, EK, et al. The utility of ultrasound superb microvascular imaging for evaluation of breast tumour vascularity: comparison with colour and power Doppler imaging regarding diagnostic performance. Clin Radiol. 2018;73(3):304-11. doi:
10.1016/j.crad.2017.10.006. Google Scholar |
Crossref
Comments (0)