A series of developmental validation tests for Number of Contributors platforms: Exemplars using NOCIt and a neural network

"Linear mixture analysis: A mathematical approach to resolving mixed DNA samples," (in English).

J. Forensic Sci. Nov 2001; 46 ([Online]. Available: <Go to ISI>://WOS:000171888000013): 1372-1378Bright J.A. Richards R. Kruijver M. Kelly H. McGovern C. Magee A. McWhorter A. Ciecko A. Peck B. Baumgartner C. Buettner C. McWilliams S. McKenna C. Gallacher C. Mallinder B. Wright D. Johnson D. Catella D. Lien E. O'Connor C. Duncan G. Bundy J. Echard J. Lowe J. Stewart J. Corrado K. Gentile S. Kaplan M. Hassler M. McDonald N. Hulme P. Oefelein R.H. Montpetit S. Strong M. Noël S. Malsom S. Myers S. Welti S. Moretti T. McMahon T. Grill T. Kalafut T. Greer-Ritzheimer M. Beamer V. Taylor D.A. Buckleton J.S.

Internal validation of STRmix (TM) - A multi laboratory response to PCAST.

Forensic Sci. Int.-Genet. May 2018; 34: 11-24https://doi.org/10.1016/j.fsigen.2018.01.003

SWGDAM , "Guidelines for Validation of Probabilistic Genotyping Systems." [Online]. Available: 〈https://docs.wixstatic.com/ugd/4344b0_22776006b67c4a32a5ffc04fe3b56515.pdf〉. Accessed: November 2020 .

Coble M.D. Buckleton J. Butler J.M. Egeland T. Fimmers R. Gill P. Gusmão L. Guttman B. Krawczak M. Morling N. Parson W. Pinto N. Schneider P.M. Sherry S.T. Willuweit S. Prinz M.

DNA Commission of the International Society for Forensic Genetics: Recommendations on the validation of software programs performing biostatistical calculations for forensic genetics applications.

Forensic Sci. Int.-Genet. Nov 2016; 25 (Article): 191-197https://doi.org/10.1016/j.fsigen.2016.09.002Grgicak C.M. Karkar S. Yearwood-Garcia X. Alfonse L.E. Duffy K.R. Lun D.S.

A large-scale validation of NOCIt's a posteriori probability of the number of contributors and its integration into forensic interpretation pipelines.

Forensic Sci Int Genet. 2020; 47102296https://doi.org/10.1016/j.fsigen.2020.102296Marciano M.A. Adelman J.D.

Developmental validation of PACE™: Automated artifact identification and contributor estimation for use with GlobalFiler™ and PowerPlex® fusion 6c generated data.

Forensic Sci Int Genet. 2019; 43102140https://doi.org/10.1016/j.fsigen.2019.102140Benschop C.C.G. van der Linden J. Hoogenboom J. Ypma R. Haned H.

Automated estimation of the number of contributors in autosomal short tandem repeat profiles using a machine learning approach.

Forensic Sci Int Genet. 2019; 43 (2019/11/01/)102150https://doi.org/10.1016/j.fsigen.2019.102150Taylor D. Bright J.A. Buckleton J.

Interpreting forensic DNA profiling evidence without specifying the number of contributors.

Forensic Sci. Int.-Genet. Nov 2014; 13: 269-280https://doi.org/10.1016/j.fsigen.2014.08.014

Contributors are a nuisance (parameter) for DNA mixture evidence evaluation.

Forensic Sci. Int.-Genet. 2018; 37: 116-125https://doi.org/10.1016/j.fsigen.2018.05.004McGovern C. Cheng K. Kelly H. Ciecko A. Taylor D. Buckleton J.S. Bright J.A.

Performance of a method for weighting a range in the number of contributors in probabilistic genotyping.

Forensic Sci Int Genet. 2020; 48 (2020/09/01/)102352https://doi.org/10.1016/j.fsigen.2020.102352Buckleton J. Taylor D. Bright J.-A. Hicks T. Curran J.

When evaluating DNA evidence within a likelihood ratio framework, should the propositions be exhaustive?.

Forensic Sci Int Genet. 2021; 50102406https://doi.org/10.1016/j.fsigen.2020.102406

An epistemic interpretation of the posterior likelihood ratio distribution.

Law, Probability and Risk. 2020; 19: 139-155https://doi.org/10.1093/lpr/mgaa010Manabe S. Morimoto C. Hamano Y. Fujimoto S. Tamaki K.

Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model.

PLOS ONE. 2017; 120188183https://doi.org/10.1371/journal.pone.0188183Bleka O. Storvik G. Gill P.

EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts.

Forensic Sci. Int.-Genet. Mar 2016; 21: 35-44https://doi.org/10.1016/j.fsigen.2015.11.008Taylor D. Bright J.A. Buckleton J.

The interpretation of single source and mixed DNA profiles.

Forensic Sci Int Genet. Sep 2013; 7: 516-528https://doi.org/10.1016/j.fsigen.2013.05.011Puch-Solis R. Rodgers L. Mazumder A. Pope S. Evett I. Curran J. Balding D.

Evaluating forensic DNA profiles using peak heights, allowing for multiple donors, allelic dropout and stutters.

Forensic Sci. Int.-Genet. Sep 2013; 7: 555-563https://doi.org/10.1016/j.fsigen.2013.05.009Perlin M.W. Legler M.M. Spencer C.E. Smith J.L. Allan W.P. Belrose J.L. Duceman B.W.

Validating TrueAllele® DNA mixture interpretation.

J Forensic Sci. Nov 2011; 56: 1430-1447https://doi.org/10.1111/j.1556-4029.2011.01859.xSwaminathan H. Qureshi M.O. Grgicak C.M. Duffy K. Lun D.S.

Four model variants within a continuous forensic DNA mixture interpretation framework: Effects on evidential inference and reporting.

PLOS ONE. 2018; 130207599https://doi.org/10.1371/journal.pone.0207599Haned H. Pene L. Lobry J.R. Dufour A.B. Pontier D.

Estimating the number of contributors to forensic DNA mixtures: does maximum likelihood perform better than maximum allele count?.

J Forensic Sci. Jan 2011; 56: 23-28https://doi.org/10.1111/j.1556-4029.2010.01550.xMarciano M.A. Adelman J.D.

PACE: Probabilistic Assessment for Contributor Estimation- A machine learning-based assessment of the number of contributors in DNA mixtures.

Forensic Sci. Int.-Genet. Mar 2017; 27: 82-91https://doi.org/10.1016/j.fsigen.2016.11.006Kruijver M. Kelly H. Cheng K. Lin M.H. Morawitz J. Russell L. Buckleton J. Bright J.A.

Estimating the number of contributors to a DNA profile using decision trees.

Forensic Sci Int Genet. 2021; 50102407https://doi.org/10.1016/j.fsigen.2020.102407Alfonse L.E. Garrett A.D. Lun D.S. Duffy K.R. Grgicak C.M.

A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt.

Forensic Sci. Int.-Genet. 2018; 32: 62-70https://doi.org/10.1016/j.fsigen.2017.10.006Swaminathan H. Grgicak C.M. Medard M. Lun D.S.

NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping.

Forensic Sci. Int.-Genet. May 2015; 16: 172-180https://doi.org/10.1016/j.fsigen.2014.11.010Benschop C.C. Haned H. Jeurissen L. Gill P.D. Sijen T.

The effect of varying the number of contributors on likelihood ratios for complex DNA mixtures.

Forensic Sci. Int.-Genet. Nov 2015; 19: 92-99https://doi.org/10.1016/j.fsigen.2015.07.003

"Validation." 2019 . In OSAC Lexicon. Retrieved Sept 21, from 〈https://lexicon.forensicosac.org〉, ed, 2019 . Accessed: November 2020.

Duffy K.R. Gurram N. Peters K.C. Wellner G. Grgicak C.M.

Exploring STR signal in the single- and multicopy number regimes: Deductions from an in silico model of the entire DNA laboratory process.

Electrophoresis. 2017 Mar; 38: 855-868https://doi.org/10.1002/elps.201600385

A stochastic model of the processes in PCR based amplification of STR DNA in forensic applications.

Forensic Sci. Int.-Genet. Jan 2012; 6: 17-25https://doi.org/10.1016/j.fsigen.2011.01.003Gill P. Curran J. Elliot K.

A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci.

Nucleic Acids Res. 2005; 33: 632-643https://doi.org/10.1093/nar/gki205Peters K.C. Swaminathan H. Sheehan J. Duffy K.R. Lun D.S. Grgicak C.M.

Production of high-fidelity electropherograms results in improved and consistent DNA interpretation: Standardizing the forensic validation process.

Forensic Sci. Int.-Genet. 2017; 31: 160-170https://doi.org/10.1016/j.fsigen.2017.09.005Bregu J. Conklin D. Coronado E. Terrill M. Cotton R.W. Grgicak C.M.

Analytical thresholds and sensitivity: establishing RFU thresholds for forensic DNA analysis.

J Forensic Sci. Jan 2013; 58: 120-129https://doi.org/10.1111/1556-4029.12008Alfonse L.E. Tejada G. Swaminathan H. Lun D.S. Grgicak C.M.

Inferring the Number of Contributors to Complex DNA Mixtures Using Three Methods: Exploring the Limits of Low-Template DNA Interpretation.

J Forensic Sci, Article. Mar 2017; 62: 308-316https://doi.org/10.1111/1556-4029.13284

On a measure of divergence between two statistical populations defined by their probability distributions.

Bull. Calcutta Math. Soc. 1943; 35: 99-109Karkar S. Alfonse L.E. Grgicak C.M. Lun D.S.

Statistical modeling of STR capillary electrophoresis signal.

BMC Bioinformatics. 2019; 20 (2019/12/02): 584https://doi.org/10.1186/s12859-019-3074-0

D. Kriesel . "A Brief Introduction to Neural Networks." 〈http://www.dkriesel.com/en/science/neural_networks〉. Accessed: November 2020.

A Novel Method to Detect Functional microRNA Regulatory Modules by Bicliques Merging.

IEEE/ACM transactions on computational biology and bioinformatics. 2016; 13 (2-5 Nov. 2014): 549-556https://doi.org/10.1109/ACSSC.2014.7094478Buckleton J.S. Lohmueller K.E. Inman K. Cheng K. Curran J.M. Pugh S.N. Bright J.A. Taylor D.A.

Testing whether stutter and low-level DNA peaks are additive.

Forensic Sci Int Genet. 2019; 43 (2019/11/01/)102166https://doi.org/10.1016/j.fsigen.2019.102166

"Report to the President: Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods," 2016 . [Online]. Available: 〈https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf〉. Accessed: November 2020.

Mönich U.J. Duffy K. Médard M. Cadambe V. Alfonse L.E. Grgicak C.

Probabilistic characterisation of baseline noise in STR profiles.

Forensic Sci. Int.-Genet. 2015; 19: 107-122https://doi.org/10.1016/j.fsigen.2015.07.001

ThermoFisher . ( 2016 ). GlobalFiler™ PCR Amplification Kit User Guide. Rev. F.

Bille T.W. Weitz S.M. Coble M.D. Buckleton J. Bright J.-A.

Comparison of the performance of different models for the interpretation of low level mixed DNA profiles.

ELECTROPHORESIS. 2014; 35: 3125-3133https://doi.org/10.1002/elps.201400110Dembinski G.M. Sobieralski C. Picard C.J.

Estimation of the number of contributors of theoretical mixture profiles based on allele counting: Does increasing the number of loci increase success rate of estimates?.

Forensic Sci. Int.-Genet. 2018; 33 (2018/03/01/): 24-32https://doi.org/10.1016/j.fsigen.2017.11.007Norsworthy S. Lun D.S. Grgicak C.M.

Determining the number of contributors to DNA mixtures in the low-template regime: Exploring the impacts of sampling and detection effects.

Legal Medicine. 2018; 32 (2018/05/01/): 1-8https://doi.org/10.1016/j.legalmed.2018.02.001Hastie T. Tibshirani R. Friedman J. Elements of Statistical Learning. 2 ed. Springer, 2017Perlin M.W. Hornyak J.M. Sugimoto G. Miller K.W.P.

TrueAllele® Genotype Identification on DNA Mixtures Containing up to Five Unknown Contributors.

J Forensic Sci. 2015; 60: 857-868https://doi.org/10.1111/1556-4029.12788Taylor D. Bright J.-A. Buckleton J.

The interpretation of single source and mixed DNA profiles.

Forensic Sci Int Genet. 2013; 7: 516-528https://doi.org/10.1016/j.fsigen.2013.05.011Alladio E. Omedei M. Cisana S. D'Amico G. Caneparo D. Vincenti M. Garofano P.

DNA mixtures interpretation - A proof-of-concept multi-software comparison highlighting different probabilistic methods' performances on challenging samples.

Forensic Sci. Int.-Genet. 2018; 37: 143-150https://doi.org/10.1016/j.fsigen.2018.08.002

A comparison of software for the evaluation of complex DNA profiles.

Forensic Sci. Int.-Genet. 2019; 40: 114-119https://doi.org/10.1016/j.fsigen.2019.02.014Bright J.-A. Cheng K. Kerr Z. McGovern C. Kelly H. Moretti T.R. Smith M.A. Bieber F.R. Budowle B. Coble M.D. Alghafri R. Allen P.S. Barber A. Beamer V. Buettner C. Russell M. Gehrig C. Hicks T. Charak J. Cheong-Wing K. Ciecko A. Davis C.T. Donley M. Pedersen N. Gartside B. Granger D. Greer-Ritzheimer M. Reisinger E. Kennedy J. Grammer E. Kaplan M. Hansen D. Larsen H.J. Laureano A. Li C. Lien E. Lindberg E. Kelly C. Mallinder B. Malsom S. Yacovone-Margetts A. McWhorter A. Prajapati S.M. Powell T. Shutler G. Stevenson K. Stonehouse A.R. Smith L. Murakami J. Halsing E. Wright D. Clark L. Taylor D.A. Buckleton J.

STRmix collaborative exercise on DNA mixture interpretation.

Forensic Sci. Int.-Genet. 2019; 40: 1-8https://doi.org/10.1016/j.fsigen.2019.01.006

Comments (0)

No login
gif