A RH, Gong Q, Tuo YJ, Zhai ST, He BL, Zou EG, Wang ML, Huang TY, Zha CL, He MZ, Zhong GY, Feng YL, Li J (2025) Syringa oblata Lindl. extract alleviated corticosterone-induced depression via the cAMP/PKA-CREB-BDNF pathway. J Ethnopharmacol 341:119274. https://doi.org/10.1016/j.jep.2024.119274
Article CAS PubMed Google Scholar
Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH (2020) Understanding oxidants and antioxidants: classical team with new players. J Food Biochem 44:e13145. https://doi.org/10.1111/jfbc.13145
Bai G, Jing S, Cao H, Qiao Y, Chen G, Duan L, Yang Y, Li M, Li W, Chang X, Yang C, Wang Q (2022) Kai-xin-san protects depression mice against CORT-induced neuronal injury by inhibiting microglia activation and oxidative stress. Evid Based Complement Alternat Med 2022:5845800. https://doi.org/10.1155/2022/5845800
Article PubMed PubMed Central Google Scholar
Bai Y, Sui R, Zhang L, Bai B, Zhu Y, Jiang H (2024) Resveratrol improves cognitive function in post-stroke depression rats by repressing inflammatory reactions and oxidative stress via the Nrf2/HO-1 pathway. Neuroscience 541:50–63. https://doi.org/10.1016/j.neuroscience.2024.01.017
Article CAS PubMed Google Scholar
Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler JA, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK (2016) Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J Mass Spectrom 51:461–475. https://doi.org/10.1002/jms.3782
Article CAS PubMed PubMed Central Google Scholar
Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov Today 25:1270–1276. https://doi.org/10.1016/j.drudis.2020.05.001
Article CAS PubMed Google Scholar
Bills KB, Obray JD, Clarke T, Parsons M, Brundage J, Yang CH, Kim HY, Yorgason JT, Blotter JD, Steffensen SC (2020) Mechanical stimulation of cervical vertebrae modulates the discharge activity of ventral tegmental area neurons and dopamine release in the nucleus accumbens. Brain Stimul 13:403–411. https://doi.org/10.1016/j.brs.2019.11.012
Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286:826–854. https://doi.org/10.1111/febs.14606
Article CAS PubMed Google Scholar
Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025
Article CAS PubMed Google Scholar
Bouvier E, Brouillard F, Molet J, Claverie D, Cabungcal JH, Cresto N, Doligez N, Rivat C, Do KQ, Bernard C, Benoliel JJ, Becker C (2017) Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 22:1701–1713. https://doi.org/10.1038/mp.2016.144
Article CAS PubMed Google Scholar
Brodde A, Teigler A, Brugger B, Lehmann WD, Wieland F, Berger J, Just WW (2012) Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum Mol Genet 21:2713–2724. https://doi.org/10.1093/hmg/dds097
Article CAS PubMed Google Scholar
Cai DJ, Li ZQ, Peng WQ, Zhang HN, He MZ, Feng YL, Zhong GY (2023) Chemical composition and blood composition of lilac based on UPLC-Q-TOF-MS technology. J Chin Med Mater 46:892–902. https://doi.org/10.13863/j.issn1001-4454.2023.04.018
Chen H, Dong M, He H, Piao X, Han X, Li R, Jiang H, Li X, Li B, Cui R (2024) Ginsenoside Re prevents depression-like behaviors via inhibition of inflammation, oxidative stress, and activating BDNF/TrkB/ERK/CREB signaling: an in vivo and in vitro study. J Agric Food Chem 72:19838–19851. https://doi.org/10.1021/acs.jafc.4c04394
Article CAS PubMed Google Scholar
Chiarla C, Giovannini I, Siegel JH (2011) Characterization of alpha-amino-n-butyric acid correlations in sepsis. Transl Res 158:328–333. https://doi.org/10.1016/j.trsl.2011.06.005
Article CAS PubMed Google Scholar
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, Zhao J, Ji P, Zhong L, Licinio J, Xie P (2022) Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation 19:41. https://doi.org/10.1186/s12974-022-02400-6
Article CAS PubMed PubMed Central Google Scholar
Fu Q, Qiu R, Liang J, Wu S, Huang D, Qin Y, Li Q, Shi X, Xiong X, Jiang Z, Chen Y, Cheng Y (2025) Sugemule-7 alleviates oxidative stress, neuroinflammation, and cell death, promoting synaptic plasticity recovery in mice with postpartum depression. Sci Rep 15:1426. https://doi.org/10.1038/s41598-025-85276-9
Article CAS PubMed PubMed Central Google Scholar
Ghafoor DD (2023) Correlation between oxidative stress markers and cytokines in different stages of breast cancer. Cytokine 161:156082. https://doi.org/10.1016/j.cyto.2022.156082
Article CAS PubMed Google Scholar
Gika H, Virgiliou C, Theodoridis G, Plumb RS, Wilson ID (2019) Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): the state of the art. J Chromatogr B Analyt Technol Biomed Life Sci 1117:136–147. https://doi.org/10.1016/j.jchromb.2019.04.009
Article CAS PubMed Google Scholar
Hu J, Yuan Q, Kang X, Qin Y, Li L, Ha Y, Wu D (2015) Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nat Commun 6:8205. https://doi.org/10.1038/ncomms9205
Article CAS PubMed Google Scholar
Jiao H, Yang H, Yan Z, Chen J, Xu M, Jiang Y, Liu Y, Xue Z, Ma Q, Li X, Chen J (2021) Traditional Chinese formula Xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the hippocampus. Neuropsychiatr Dis Treat 17:1001–1019. https://doi.org/10.2147/NDT.S302443
Article PubMed PubMed Central Google Scholar
Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459. https://doi.org/10.1038/nrm.2016.25
Article CAS PubMed PubMed Central Google Scholar
Kanzaki H, Shinohara F, Kajiya M, Fukaya S, Miyamoto Y, Nakamura Y (2014) Nuclear Nrf2 induction by protein transduction attenuates osteoclastogenesis. Free Radic Biol Med 77:239–248. https://doi.org/10.1016/j.freeradbiomed.2014.09.006
Article CAS PubMed Google Scholar
Li J, Jia B, Cheng Y, Song Y, Li Q, Luo C (2022) Targeting molecular mediators of ferroptosis and oxidative stress for neurological disorders. Oxid Med Cell Longev 2022:3999083. https://doi.org/10.1155/2022/3999083
Article CAS PubMed PubMed Central Google Scholar
Li L, Meng Z, Huang Y, Xu L, Chen Q, Qiao D, Yue X (2024) Chronic sleep deprivation causes anxiety, depression and impaired gut barrier in female mice-correlation analysis from fecal microbiome and metabolome. Biomedicines. https://doi.org/10.3390/biomedicines12122654
Article PubMed PubMed Central Google Scholar
Li C, Wu Z, Chen F, Dai C, Yang X, Ye S, Shi M, Chen P, Liu X, Liu F (2025) Regulation of Nrf2/GPX4 signaling pathway by hyperbaric oxygen protects against depressive behavior and cognitive impairment in a spinal cord injury rat model. CNS Neurosci Ther 31:e70421. https://doi.org/10.1111/cns.70421
Article CAS PubMed PubMed Central Google Scholar
Li J, Wu X, Yan S, Shen J, Tong T, Aslam MS, Zeng J, Chen Y, Chen W, Li M, You Z, Gong K, Yang J, Zhu M, Meng X (2025) Understanding the antidepressant mechanisms of acupuncture: targeting hippocampal neuroinflammation, oxidative stress, neuroplasticity, and apoptosis in CUMS rats. Mol Neurobiol 62:4221–4236. https://doi.org/10.1007/s12035-024-04550-5
Article CAS PubMed Google Scholar
Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G (2015) Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res 14:2322–2330. https://doi.org/10.1021/acs.jproteome.5b00144
Comments (0)