Application of Network Pharmacology in Elucidating Molecular Mechanisms of Traditional Drugs for Pulmonary Fibrosis

Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose K-A, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP (2022) Saracatinib, a selective SRC kinase inhibitor, blocks fibrotic responses in preclinical models of pulmonary fibrosis. Am J Respir Crit Care Med 206:1463–1479. https://doi.org/10.1164/rccm.202010-3832OC

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aksam VKM, Chandrasekaran VM, Pandurangan S (2021) Neural network based prediction of less side effect causing cancer drug targets in the network of MAPK pathways. Int J Bioinforma Res Appl 17:69–79. https://doi.org/10.1504/ijbra.2021.113963

Article  Google Scholar 

Amati F, Stainer A, Polelli V, Mantero M, Gramegna A, Blasi F, Aliberti S (2023) Efficacy of pirfenidone and nintedanib in interstitial lung diseases other than idiopathic pulmonary fibrosis: a systematic review. Int J Mol Sci 24:7849. https://doi.org/10.3390/ijms24097849

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A (2022) Genetic, parental and lifestyle factors influence telomere length. Commun Biol 5:565. https://doi.org/10.1038/s42003-022-03521-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes PJ, Baker J, Donnelly LE (2019) Cellular senescence as a mechanism and target in chronic lung diseases. Am J Respir Crit Care Med 200:556–564. https://doi.org/10.1164/rccm.201810-1975TR

Article  CAS  PubMed  Google Scholar 

Bian M, Yang Z, Dong Y, Qiu M, Gao Z (2022) Exploring mechanism of isorhynchophylline in treatment of pulmonary fibrosis through network pharmacology and molecular docking. Drug Eval Res 45:418–427. https://doi.org/10.7501/j.issn.1674-6376.2022.03.003

Article  CAS  Google Scholar 

Bing P, Zhou W, Tan S (2022) Study on the mechanism of astragalus polysaccharide in treating pulmonary fibrosis based on “drug-target-pathway” network. Front Pharmacol 13:865065. https://doi.org/10.3389/fphar.2022.865065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byregowda BH, Baby K, Maity S, Nayak UY, S G, Fayaz SM, Nayak Y (2024) Network pharmacology and in silico approaches to uncover multitargeted mechanism of action of Zingiber zerumbet rhizomes for the treatment of idiopathic pulmonary fibrosis. F1000Res 13:216. https://doi.org/10.12688/f1000research.142513.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Li L, Xiong L, Wang C, Chen Y, Zhang X (2022) Research on the mechanism of berberine in the treatment of COVID-19 pneumonia pulmonary fibrosis using network pharmacology and molecular docking. Phytomedicine plus 2:100252. https://doi.org/10.1016/j.phyplu.2022.100252

Article  PubMed  PubMed Central  Google Scholar 

Cerro Chiang G, Parimon T (2023) Understanding interstitial lung diseases associated with connective tissue disease (CTD-ILD): genetics, cellular pathophysiology, and biologic drivers. Int J Mol Sci 24:2405. https://doi.org/10.3390/ijms24032405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrababu S, Bastola DR (2018) Comparative analysis of graph and relational databases using HerbMicrobeDB. In: 2018 IEEE International Conference on Healthcare Informatics Workshop (ICHI-W). pp 19–28

Chen H, Lin Y, Zeng L, Liu S (2022) Elucidating the mechanism of Hongjinshen decoction in the treatment of pulmonary fibrosis based on network pharmacology and molecular docking. Medicine 101(51):e32323. https://doi.org/10.1097/MD.0000000000032323

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Tang R-Z, Ruan J, Zhu X-B, Yang Y (2019) Up-regulation of THY1 attenuates interstitial pulmonary fibrosis and promotes lung fibroblast apoptosis during acute interstitial pneumonia by blockade of the WNT signaling pathway. Cell Cycle 18:670–681. https://doi.org/10.1080/15384101.2019.1578144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X-L, Tang C, Xiao Q-L, Pang Z-H, Zhou D-D, Xu J, Wang Q, Zhao Y-X, Zhu Q-Y (2021) Mechanism of Fei-Xian formula in the treatment of pulmonary fibrosis on the basis of network pharmacology analysis combined with molecular docking validation. Evidence-Based Complementary Alternative Med. https://doi.org/10.1155/2021/6658395

Article  Google Scholar 

Chen X, Wei M, Li G-DG-D, Sun Q-L, Fan J-QJ-Q, Li J-YJ-Y, Yun C-MC-MC-MC-M, Liu D-MD-M, Shi H, Qu Y-Q (2024) YuPingFeng (YPF) upregulates caveolin-1 (CAV1) to alleviate pulmonary fibrosis through the TGF-β1/Smad2 pathway. J Ethnopharmacol 319:117357. https://doi.org/10.1016/j.jep.2023.117357

Article  CAS  PubMed  Google Scholar 

Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J (2022) Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. Int J Mol Sci 23:6894. https://doi.org/10.3390/ijms23136894

Article  CAS  PubMed  PubMed Central  Google Scholar 

Confalonieri P, Volpe MC, Jacob J, Maiocchi S, Salton F, Ruaro B, Confalonieri M, Braga L (2022) Regeneration or repair? The role of alveolar epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Cells 11:2095. https://doi.org/10.3390/cells11132095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Decato BE, Leeming DJ, Sand JMB, Fischer A, Du S, Palmer SM, Karsdal M, Luo Y, Minnich A (2022) LPA(1) antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res 23:61. https://doi.org/10.1186/s12931-022-01980-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diker NY, Kutluay VM (2025) A new approach in drug discovery: network pharmacology. J Res Pharm 27:6–8. https://doi.org/10.29228/jrp.454

Article  Google Scholar 

Ding L, Li Y, Yang Y, Song S, Qi H, Wang J, Wang ZZ, Zhao J, Zhang W, Zhao L, Zhao D, Li X, Wang ZZ (2022) Wenfei Buqi Tongluo formula against bleomycin-induced pulmonary fibrosis by inhibiting TGF-β/Smad3 pathway. Front Pharmacol 12:762998. https://doi.org/10.3389/fphar.2021.762998

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du H, Shao M, Xu S, Yang Q, Xu J, Ke H, Zou L, Huang L, Cui Y, Qu F (2024) Integrating metabolomics and network pharmacology analysis to explore mechanism of Pueraria lobata against pulmonary fibrosis: involvement of arginine metabolism pathway. J Ethnopharmacol 332:118346. https://doi.org/10.1016/j.jep.2024.118346

Article  CAS  PubMed  Google Scholar 

Dutta B, Goswami R, Rahaman SO (2020) TRPV4 plays a role in matrix stiffness-induced macrophage polarization. Front Immunol 11:570195. https://doi.org/10.3389/fimmu.2020.570195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Effendi WI, Nagano T (2021) The hedgehog signaling pathway in idiopathic pulmonary fibrosis: resurrection time. Int J Mol Sci 23:171. https://doi.org/10.3390/ijms23010171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, Yang IV, Schwartz DA (2016) Idiopathic pulmonary fibrosis: a genetic disease that involves mucociliary dysfunction of the peripheral airways. Physiol Rev 96:1567–1591. https://doi.org/10.1152/physrev.00004.2016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan Z, Pu X, Li L, Li Q, Jiang T, Lu L, Tang J, Pan M, Zhang L, Chai Y (2023) Mechanism of Polygonum capitatum intervention in pulmonary fibrosis based on network pharmacology and molecular docking technology: a review. Medicine 102:E34912. https://doi.org/10.1097/MD.0000000000034912

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y-Y, Liu J-F, Xue Y, Liu D, Wu X-Z (2024) Network pharmacology based elucidation of molecular mechanisms of Laoke formula for treatment of advanced non-small cell lung cancer. Chin J Integr Med 30:984–992. https://doi.org/10.1007/s11655-024-3717-5

Article  CAS  PubMed 

Comments (0)

No login
gif