Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery. Mater Sci Eng C. 2015;47:172–9. https://doi.org/10.1016/j.msec.2014.11.046.
Vo AQ, Feng X, Morott JT, Pimparade MB, Tiwari RV, Zhang F, et al. A novel floating controlled release drug delivery system prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2016;98:108–21. https://doi.org/10.1016/j.ejpb.2015.11.015.
Article CAS PubMed Google Scholar
Chamundeeswari M, Jeslin J, Verma ML. Nanocarriers for drug delivery applications. Environ Chem Lett. 2019;17:849–65. https://doi.org/10.1007/s10311-018-00841-1.
Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.
Article PubMed PubMed Central Google Scholar
Araujo RV, Santos SS, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23:1–27. https://doi.org/10.3390/molecules23112849.
Gupta A, Dubey S, Mishra M. Unique structures, properties and applications of dendrimers. J Drug Deliv Ther. 2018;8:328–39. https://doi.org/10.22270/jddt.v8i6-s.2083.
Magana N, Delia S, Vazquez-Lima H, Yepez R, Santillan R. Synthesis of frechet-type poly(aryl ether) dendrimers with allyl end groups: comparative convergent and divergent approaches. Arkivoc. 2017;5:117–28. https://doi.org/10.3998/ark.5550190.p009.994.
Sandoval-Yanez C, Rodriguez CC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials. 2020;13:1–20. https://doi.org/10.3390/ma13030570.
• Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13:1–31. https://doi.org/10.3390/ma13010065This is a comprehensive review which highlights various synthesis methods, properties and applications of dendrimers as excipients in pharmacological formulations including biomedical applications.
Guo L, Wang C, Yang C, Wang X, Zhang T, Zhang Z, et al. Morpholino-terminated dendrimer shows enhanced tumor pH-triggered cellular uptake, prolonged circulation time, and low cytotoxicity. Polymer. 2016;84:189–97. https://doi.org/10.1016/j.polymer.2015.12.056.
Kumar PS, Datta MS, Kumar DM, Kumar TV, Krishna V, Ram D. Potential application of dendrimers in drug delivery: a concise review and update. J Drug Deliv Ther. 2016;6:71–88. https://doi.org/10.22270/jddt.v6i2.1195.
Narmani A, Mohammadnejad J, Yavari K. Synthesis and evaluation of polyethylene glycol-and folic acid-conjugated -conjugated polyamidoamine G4 dendrimer as nanocarrier. J Drug Deliv Sci Technol. 2019;50:278–86. https://doi.org/10.1016/j.jddst.2019.01.037.
Thanh VM, Nguyen TH, Tran TV, Ngoc UP, Ho MN, Nguyen TT, et al. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C. 2018;82:291–8. https://doi.org/10.1016/j.msec.2017.07.051.
Rabiee N, Ahmadvand S, Ahmadi S, Fatahi Y, Dinarvand R, Bagherzadeh M, et al. Carbosilane dendrimers: drug and gene delivery applications. J Drug Deliv Sci Technol. 2020;59:101879. https://doi.org/10.1016/j.jddst.2020.101879.
Fan X, Zhang W, Hu Z, Li Z. Facile synthesis of RGD-conjugated unimolecular micelles based on a polyester dendrimer for targeting drug delivery. J Mater Chem B. 2017;5:1062–72. https://doi.org/10.1039/C6TB02234K.
Article CAS PubMed Google Scholar
Rai AK, Tiwari R, Maurya P, Yadav P. Dendrimers: a potential carrier for targeted drug delivery system. Pharm biol eval. 2016;3:257–87. https://doi.org/10.5281/zenodo.56068.
Brunetti V, Bouchet LM, Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. Nanoscale. 2015;7:3808–16. https://doi.org/10.1039/C4NR04438J.
Article CAS PubMed Google Scholar
•• Dias AP, Santos SS, Silva JV, Parise-Filho R, Ferreira EI, Seoud OE, et al. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;573:118814. https://doi.org/10.1016/j.ijpharm.2019.118814This review article provides in-detail description about dendrimers use in infectious diseases, cancer, neurological and information about available dendrimer products and in clinical phase.
Article CAS PubMed Google Scholar
Gorzkiewicz M, Janaszewska A, Ficker M, Svenningsen SW, Christensen JB, Klajnert-Maculewicz B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf B: Biointerfaces. 2019;181:959–62. https://doi.org/10.1016/j.colsurfb.2019.06.056.
Article CAS PubMed Google Scholar
Ganda IS, Zhong Q, Hali M, Albuquerque RLC, Padilha FF, da Rocha SRP, et al. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm. 2017;527:79–91. https://doi.org/10.1016/j.ijpharm.2017.05.045.
Article CAS PubMed PubMed Central Google Scholar
Stolarska M, Gucwa K, Urbanczyk-Lipowska Z, Andruszkiewicz R. Peptide dendrimers as antifungal agents and carriers for potential antifungal agent–N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid–synthesis and antimicrobial activity. J Pept Sci. 2020;26:1–7. https://doi.org/10.1002/psc.3226.
Li N, Cai H, Jiang L, Hu J, Bains A, Hu J, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9:6865–77. https://doi.org/10.1021/acsami.6b15505.
Article CAS PubMed Google Scholar
• Sahoo RK, Gothwal A, Rani S, Nakhate KT, Gupta AU. PEGylated dendrimer mediated delivery of Bortezomib: drug conjugation versus encapsulation. Int J Pharm. 2020;584:119389–402. https://doi.org/10.1016/j.ijpharm.2020.119389This study reported the difference between conjugation and encapsulation of the drug Bortezomib to PAMAM dendrimer.
Article CAS PubMed Google Scholar
Singh J, Jain K, Mishra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cell Nanomed B. 2016;44:1626–34. https://doi.org/10.3109/21691401.2015.1129625.
Wang J, Li D, Fan Y, Shi M, Yang Y, Wang L, et al. Core–shell tecto dendrimers formed via host–guest supramolecular assembly as pH-responsive intelligent carriers for enhanced anticancer drug delivery. Nanoscale. 2019;11:22343–50. https://doi.org/10.1039/C9NR08309J.
Article CAS PubMed Google Scholar
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90. https://doi.org/10.1016/j.apmt.2018.05.002.
Article PubMed PubMed Central Google Scholar
Bono N, Pennetta C, Bellucci M, Sganappa A, Malloggi C, Tadeschi G, et al. Role of generation on successful DNA delivery of PAMAM–(Guanidino)Neomycin conjugates. ACS Omega. 2019;4:6796–807. https://doi.org/10.1021/acsomega.8b02757.
Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, et al. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep. 2018;8:9410–23. https://doi.org/10.1038/s41598-018-27400-6.
Article CAS PubMed PubMed Central Google Scholar
Weregowska-Ciecwierz K, Wisniewski M, Terzyk AP, Furmaniak S. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv Cond Matter Phys. 2015;2015:1–28. https://doi.org/10.1155/2015/198175.
Singh AK, Gothwal A, Rani S, Rana M, Sharma AK, Yadav AK, et al. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega. 2019;4:4519–29. https://doi.org/10.1021/acsomega.8b03445.
Comments (0)