Palekar-Shanbhag P, Jog SV, Chogale MM, Gaikwad SS. Theranostics for cancer therapy. Curr Drug Deliv. 2013;10(3):357–62.
Kulkarni NS, Guererro Y, Gupta N, Muth A, Gupta V. Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Technol. 2019;49:352–64 Available from: http://www.sciencedirect.com/science/article/pii/S177322471831219X.
Fang M, Peng C-W, Pang D-W, Li Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med. 2012;9(3):151–63 Available from: https://pubmed.ncbi.nlm.nih.gov/23691472.
CAS PubMed PubMed Central Google Scholar
Xie J, Zheng Y, Ying JY. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc. 2009;131(3):888–9. https://doi.org/10.1021/ja806804u.
Article CAS PubMed Google Scholar
Yang X, Zhu S, Dou Y, Zhuo Y, Luo Y, Feng Y. Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta. 2014;122:36–42 Available from: http://www.sciencedirect.com/science/article/pii/S0039914013009909.
Li Z-Y, Wu Y-T, Tseng W-L. UV-Light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: application to ratiometric fluorescent sensing of nucleic acids. ACS Appl Mater Interfaces. 2015;7(42):23708–16. https://doi.org/10.1021/acsami.5b07766.
Article CAS PubMed Google Scholar
Shellaiah M, Simon T, Thirumalaivasan N, Sun KW, Ko F-H, Wu S-P. Cysteamine-capped gold-copper nanoclusters for fluorometric determination and imaging of chromium(VI) and dopamine [Internet]. Vol. 186, Mikrochimica acta. Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan; 2019. p. 788. Available from: http://europepmc.org/abstract/MED/31732881
Shang L, Yang L, Stockmar F, Popescu R, Trouillet V, Bruns M, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale. 2012;4(14):4155–60. https://doi.org/10.1039/C2NR30219E.
Article CAS PubMed Google Scholar
Triulzi RC, Micic M, Giordani S, Serry M, Chiou W-A, Leblanc RM. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer–gold quantum dot complex. Chem Commun. 2006;48:5068–70. https://doi.org/10.1039/B611278A.
Varnavski O, Ramakrishna G, Kim J, Lee D, Goodson T. Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc. 2010;132(1):16–7. https://doi.org/10.1021/ja907984r.
Article CAS PubMed Google Scholar
Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties. J Am Chem Soc. 2008;130(18):5883–5. https://doi.org/10.1021/ja801173r.
Article CAS PubMed Google Scholar
Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413. https://doi.org/10.1021/acs.chemrev.5b00703.
Article CAS PubMed Google Scholar
So PTC, Dong CY, Masters BR, Berland KM. Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng. 2000;2(1):399–429. https://doi.org/10.1146/annurev.bioeng.2.1.399.
Article CAS PubMed Google Scholar
Wu Z, Jin R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010;10(7):2568–73. https://doi.org/10.1021/nl101225f.
Article CAS PubMed Google Scholar
Chang H-Y, Chang H-T, Hung Y-L, Hsiung T-M, Lin Y-W, Huang C-C. Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv. 2013;3(14):4588–97. https://doi.org/10.1039/C3RA23036H.
Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76. https://doi.org/10.1021/jp800508d.
Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, et al. Gold nanoclusters doped with (64)Cu for CXCR4 positron emission tomography imaging of breast cancer and metastasis. ACS Nano. 2016;10(6):5959–70 Available from: http://europepmc.org/abstract/MED/27159079.
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. 2007;25(10):1165–70.
Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed Eng. 2011;50(14):3168–72.
Wang J-Y, Chen J, Yang J, Wang H, Shen X, Sun Y-M, et al. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy. Int J Nanomedicine. 2016;11:3475–85.
Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Adv Exp Med Biol. 2018;1048:175–98.
Shang L, Nienhaus GU. Metal nanoclusters: Protein corona formation and implications for biological applications. Int J Biochem Cell Biol. 2016 Jun;75:175–9.
Liu J, Yu M, Zhou C, Zheng J. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today. 2013;16(12):477–86 Available from: http://www.sciencedirect.com/science/article/pii/S1369702113003878.
Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale. 2013;5(4):1537–43.
Shang L, Dörlich RM, Brandholt S, Schneider R, Trouillet V, Bruns M, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale. 2011;3(5):2009–14. https://doi.org/10.1039/C0NR00947D.
Article CAS PubMed Google Scholar
Mutas M, Strelow C, Kipp T, Mews A. Specific binding and internalization: an investigation of fluorescent aptamer-gold nanoclusters and cells with fluorescence lifetime imaging microscopy. Nanoscale. 2018;10(43):20453–61. https://doi.org/10.1039/C8NR06639F.
Article CAS PubMed Google Scholar
Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1(38):5045–53. https://doi.org/10.1039/C3TB20784F.
Article CAS PubMed Google Scholar
Liang G, Ye D, Zhang X, Dong F, Chen H, Zhang S, et al. One-pot synthesis of Gd3+-functionalized gold nanoclusters for dual model (fluorescence/magnetic resonance) imaging. J Mater Chem B. 2013;1(29):3545–52. https://doi.org/10.1039/C3TB20440E.
Article CAS PubMed Google Scholar
Hu D-H, Sheng Z-H, Zhang P-F, Yang D-Z, Liu S-H, Gong P, et al. Hybrid gold-gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo. Nanoscale. 2013;5(4):1624–8.
Lee S, Chen X. Dual-Modality Probes for in Vivo Molecular Imaging. Mol Imaging. 2009;8(2):7290.2009.00013. Available from: https://journals.sagepub.com/doi/abs/10.2310/7290.2009.00013
Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, et al. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials. 2014;35(37):9868–76 Available from: http://europepmc.org/abstract/MED/25224367.
Khandelia R, Bhandari S, Pan UN, Ghosh SS, Chattopadhyay A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small. 2015;11(33):4075–81. https://doi.org/10.1002/smll.201500216.
Article CAS PubMed Google Scholar
Chen D, Luo Z, Li N, Lee JY, Xie J, Lu J. amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv Funct Mater. 2013;23(35):4324–31. https://doi.org/10.1002/adfm.201300411.
Vankayala R, Kuo C-L, Nuthalapati K, Chiang C-S, Hwang KC. Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-Light activated photodynamic therapy. Adv Funct Mater. 2015;25(37):5934–45. https://doi.org/10.1002/adfm.201502650.
Comments (0)