Magnetic Nanostructures for Cancer Theranostic Applications

Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cancer facts and figures 2020 (https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf) assessed on 03/12/2020.

Gogoi M, Jaiswal MK, Sarma HD, Bahadur D, Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol. 2017;9(6):555–65. This is an important research paper that demonstrates the in vivo biocompatibility as well as therapeutic efficacy studies of magnetic liposomes used for self-controlled hyperthermia.

Ahmed S, Rajak BL, Gogoi M, Sarma HD. Magnetic nanoparticles mediated cancer hyperthermia in smart healthcare for disease diagnosis and prevention. In: Paul S, Bhatia D, editors. : Elsevier; 2020. p. 153–73. This article reviews the basic principles behind different theranostic applications of magnetic nanoparticles.

Feng SS, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci. 2003;58:4087–114.

Article  CAS  Google Scholar 

Gogoi M, Kumar N, Patra S. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In: Holban AM, Grumezescu AM, editors. Nanoarchitectonics for smart delivery and drug targeting: Elsevier; 2016. p. 743–72.

Chapter  Google Scholar 

Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

Article  CAS  Google Scholar 

Hu F, Joshi HM, Dravid VP, Meade TJ. High-performance nanostructured MR contrast probes. Nanoscale. 2010;2(10):1884–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003;96(4):364–9.

Article  CAS  PubMed  Google Scholar 

Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth. 1997;13(6):587–5.

Article  CAS  Google Scholar 

Jordan A, Wust P, Scholz R, Tesche B, Fahling H, Mitrovics T, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int J Hyperth. 1996;12:705–22.

Article  CAS  Google Scholar 

Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000;60(23):6641–8.

CAS  PubMed  Google Scholar 

Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater. 2002;252:363–6.

Article  CAS  Google Scholar 

Jaiswal MK, Gogoi M, Sarma HD, Banerjee R, Bahadur D. Biocompatibility, biodistribution and efficacy of magnetic nanohydrogels in inhibiting growth of tumor in experimental mice model. Biomater Sci. 2014;2(3):370–80.

Article  CAS  PubMed  Google Scholar 

McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3(2):169–80.

CAS  PubMed  PubMed Central  Google Scholar 

Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc. 2005;127(16):5732–3.

Article  CAS  PubMed  Google Scholar 

Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas LI, et al. Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem Mater. 1999;11(11):3058–64.

Article  CAS  Google Scholar 

Lee JH, Huh YM, Jun Y, Seo J, Jang J, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2004;13(1):95–9.

Article  CAS  Google Scholar 

Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J. 2009. Critical enhancements of MRI contrast and hyperthermic effects by dopant controlled magnetic nanoparticles. Angew Chem Int Ed. 2009;48(7):1234–8.

Article  CAS  Google Scholar 

Nandwana V, De M, Chu S, Jaiswal M, Rotz M, Meade TJ, et al. Theranostic magnetic nanostructures (MNS) for cancer. Cancer Treat Res. 2015;166:51–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility. Pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818–78.

Article  CAS  PubMed  Google Scholar 

Schultz-Sikma EA, Joshi HM, Ma Q, MacRenaris KW, Eckermann AL, Dravid VP, et al. Probing the chemical stability of mixed ferrites: implications for magnetic resonance contrast agent design. Chem Mater. 2011;23(10):2657–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41(11):4306–34.

Article  CAS  PubMed  Google Scholar 

Xu CJ, Wang BD, Sun SH. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc. 2009;131(12):4216–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwon KW, Shim M. 2005. Gamma-Fe2O3/II–VI sulfide nanocrystal heterojunctions. J Am Chem Soc. 2005;127(29):10269–75.

Article  CAS  PubMed  Google Scholar 

Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett. 2009;7(4):861–7.

Article  CAS  Google Scholar 

Swain AK, Pradhan L, Bahadur D. Polymer stabilized Fe3O4-graphene as an amphiphilic drug carrier for thermo-chemotherapy of cancer. ACS Appl Mater Interfaces. 2015;7:8013–22.

Article  CAS  PubMed  Google Scholar 

Lacava LM, Lacava ZGM, Azevedo RB, Chaves SB, Garcia VAP, Silva O, et al. Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice. J Magn Magn Mater. 2002;252:367–9.

Article  CAS  Google Scholar 

Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater. 2004;272:2434–5.

Article  CAS  Google Scholar 

Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomat. 2005;26:2685–94.

Article  CAS  Google Scholar 

Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mat Res Part B: Appl Biomat. 2007;81(1):12–22.

Article  CAS  Google Scholar 

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

Article  CAS  PubMed  Google Scholar 

Bonnemain B. Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review J Drug Target. 1998;6(3):167–74.

Article  CAS  PubMed  Google Scholar 

Mohapatra J, Mitra A, Tyagi H, Bahadur D, Aslam M. Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale. 2015;7:9174–84.

Article  CAS  PubMed  Google Scholar 

Saikia K, Bhattacharya K, Sen D, Kaushik SD, Biswas J, Lodha S, et al. Solvent evaporation driven entrapment of magnetic nanoparticles in mesoporous frame for designing a highly efficient MRI contrast probe. Appl Surf Sci. 2019;464:567–76. This article explains an important process to improve the efficiency of magnetic nanoparticles as an MRI contrast agent.

Wáng YXJ, Idée J-M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic r

Comments (0)

No login
gif