Role of Nanoscale Delivery Systems in Tissue Engineering

Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci. 2008;121:255–64. https://doi.org/10.1242/jcs.006064.

Article  PubMed  CAS  Google Scholar 

Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011;17(5):349–64. https://doi.org/10.1089/ten.TEB.2011.0238.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–9. https://doi.org/10.1021/nn406590q.

Article  PubMed  CAS  Google Scholar 

Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive survey on nanobiomaterials for bone tissue engineering applications. Nanomaterials (Basel). 2020;10:2019. https://doi.org/10.3390/nano10102019.

Article  CAS  Google Scholar 

•• Martins A, Reis RL, Neves NM. Biofunctional nanostructured systems for regenerative medicine. Nanomedicine (Lond). 2020;15:1545–9. https://doi.org/10.2217/nnm-2020-0147.. (This review discusses various approaches including controlled production and surface modification of nanostructures to achieve personalized tissue engineering.)

Article  CAS  Google Scholar 

Fernández-Urrusuno R, Fattal E, Rodrigues JM Jr, Féger J, Bedossa P, Couvreur PJ. Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. Biomed Mater Res. 1996;31:401–8. https://doi.org/10.1002/(SICI)1097-4636(199607)31:3%3c401::AID-JBM15%3e3.0.CO;2-L.

Article  Google Scholar 

Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. Nanomedicine. 2015;11:1253–63. https://doi.org/10.1016/j.nano.2015.02.013.

Article  PubMed  CAS  Google Scholar 

Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34. https://doi.org/10.1016/j.actbio.2009.10.031.

Article  PubMed  CAS  Google Scholar 

Sharma P, Kumar A, Dey AD, Behl T, Chadha S. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: a promise to heal from within. Life Sci. 2021;268:118932. https://doi.org/10.1016/j.lfs.2020.118932.

Article  PubMed  CAS  Google Scholar 

Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface. 2010;7:209–27. https://doi.org/10.1098/rsif.2009.0379.

Article  PubMed  CAS  Google Scholar 

Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008;2:81–96. https://doi.org/10.1002/term.74.

Article  PubMed  CAS  Google Scholar 

Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976). 2006;31(5):542–7.

Article  Google Scholar 

Ferrand A, Eap S, Richert L, Lemoine S, Kalaskar D, Demoustier-Champagne S, Atmani H, Mély Y, Fioretti F, Schlatter G, Kuhn L, Ladam G, Benkirane-Jessel N. Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors. Macromol Biosci. 2014;14(1):45–55. https://doi.org/10.1097/01.brs.0000201424.27509.72.

Article  PubMed  CAS  Google Scholar 

•• De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater. 2018;5(4):197–211. https://doi.org/10.1093/rb/rby013.. (This is a review that focuses on various growth factor delivery approaches used in bone tissue engineering.)

Article  PubMed  PubMed Central  CAS  Google Scholar 

Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141–62. https://doi.org/10.1016/0169-409X(93)90046-7.

Article  CAS  Google Scholar 

Nyberg E, Holmes C, Witham T, Grayson WL. Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res. 2016;6:184–94. https://doi.org/10.1007/s13346-015-0233-3.

Article  PubMed  CAS  Google Scholar 

Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121:91–9.

Article  CAS  Google Scholar 

Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, Uludağ H. Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnol Prog. 2008;24:945–56. https://doi.org/10.1002/btpr.12.

Article  PubMed  CAS  Google Scholar 

Park KH, Kim H, Moon S, Na K. Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering. J Biosci Bioeng. 2009;108:530–7. https://doi.org/10.1016/j.jbiosc.2009.05.021.

Article  PubMed  CAS  Google Scholar 

Wang B, Guo Y, Chen X, et al. Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Int J Nanomedicine. 2018;13:7395–408. https://doi.org/10.2147/IJN.S180859 (Published 2018 Nov 12).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Min Q, Yu X, Liu J, Wu J, Wan Y. Chitosan-based hydrogels embedded with hyaluronic acid complex nanoparticles for controlled delivery of bone morphogenetic protein-2. Pharmaceutics. 2019;11(5):214. https://doi.org/10.3390/pharmaceutics11050214.

Article  PubMed Central  CAS  Google Scholar 

Wang Z, Wang K, Lu X, Li M, Liu H, Xie C, Meng F, Jiang O, Li C, Zhi W. BMP-2 encapsulated polysaccharide nanoparticle modified biphasic calcium phosphate scaffolds for bone tissue regeneration. J Biomed Mater Res A. 2015;103:1520–32. https://doi.org/10.1002/jbm.a.35282.

Article  PubMed  CAS  Google Scholar 

Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28:2087–96. https://doi.org/10.1016/j.biomaterials.2006.12.028.

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Witte TM, Wagner AM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Degradable poly(methyl methacrylate)-co-methacrylic acid nanoparticles for controlled delivery of growth factors for bone regeneration. Tissue Eng Part A. 2020;26:1226–42. https://doi.org/10.1089/ten.tea.2020.0010.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Udomluck N, Lee H, Hong S, Lee S-H, Park H. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci. 2020;520:146311. https://doi.org/10.1016/j.apsusc.2020.146311.

Article  CAS  Google Scholar 

Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomedicine. 2013;8:47–59. https://doi.org/10.2147/IJN.S37953.

Article  PubMed  CAS  Google Scholar 

Min Q, Liu J, Zhang Y, Yang B, Wan Y, Wu J. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics. 2020;12(7):613. https://doi.org/10.3390/pharmaceutics12070613.

Article  PubMed Central  CAS  Google Scholar 

Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol. 2021;172:381–93. https://doi.org/10.1016/j.ijbiomac.2021.01.069.

Article  PubMed 

Comments (0)

No login
gif