Toxicology of Nanoparticles in Drug Delivery

Khana I, Saeed K, IdreesKhan. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019; 908–93. https://doi.org/10.1016/j.arabjc.2017.05.011.

Mehta RV. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater Sci Eng C. 2017;79:901–16. https://doi.org/10.1016/j.msec.2017.05.135.

Article  CAS  Google Scholar 

Zahin Nuzhat, Anwar Raihanatul, Tewari Devesh, Kabir MT, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res. 2019;27:19151–68. https://doi.org/10.1007/s11356-019-05211-0.

Article  CAS  Google Scholar 

Hasan A, Morshed M, Memic A, Hassan S, et al. Nanoparticles in tissue engineering: applications, challenges and prospects. 2018:13: 5637–5655. https://doi.org/10.2147/IJN.S153758.

Prasad M, Lambe UP, Brar B, lShah I, et al. Nanotherapeutics: an insight into healthcare and multi-dimensional applications in the medical sector of the modern world 2018:97: 1521–1537. https://doi.org/10.1016/j.biopha.2017.11.026.

Nikolova M, Chavali M. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27. https://doi.org/10.3390/biomimetics5020027.

Article  PubMed Central  CAS  Google Scholar 

Patra J, Das G, Fraceto L, Campos E, Rodriguez-Torres M, Acosta-Torres L, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1). https://doi.org/10.1186/s12951-018-0392-8.

De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–49. https://doi.org/10.2147/ijn.s596.

Article  Google Scholar 

Pasut G. Grand challenges in nano-based drug delivery. Front Med Technol. 2019;1(1). https://doi.org/10.3389/fmedt.2019.00001.

Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, et al. Minimum information reporting in bio–nano experimental literature. Nat Nanotechnol. 2018;13:777–85. https://doi.org/10.1038/s41565-018-0246-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yan H, Xue Z, Xie J, Dong Y, Ma Z, Sun X, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomed. 2019;14:10179–94. https://doi.org/10.2147/IJN.S220087.

Article  CAS  Google Scholar 

Wong B, Yoong S, Jagusiak A, Panczyk T, Ho H, Ang W, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev. 2013;65(15):1964–2015. https://doi.org/10.1016/j.addr.2013.08.005.

Article  PubMed  CAS  Google Scholar 

Singh B, Lohan S, Sandhu P, Jain A, Mehta S. Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics. Nanobiomater Med Imaging. 2016;455–478. https://doi.org/10.1016/B978-0-323-41736-5.00015-7.

Saifuddin N, Raziah A, Junizah A. Carbon nanotubes: a review on structure and their interaction with proteins. J Chem. 2013:1–18. https://doi.org/10.1155/2013/676815.

Jin H, Heller D, Strano M. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008;8(6):1577–85.

Article  Google Scholar 

Gholamine B, Karimi I, Salimi A, et al. Neurobehavioral toxicity of carbon nanotubes in mice. Toxicol Ind Health. 2017;33:340–50. https://doi.org/10.1177/0748233716644381.

Article  PubMed  CAS  Google Scholar 

Chen H, Zheng X, Nicholas J, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza virus titers in mice. Virol J. 2017;14:242. https://doi.org/10.1186/s12985-017-0909-z.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Park EJ, Choi J, Kim JH, et al. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology. 2016;10:1188–202. https://doi.org/10.1080/17435390.2016.1202348.

Article  PubMed  CAS  Google Scholar 

Lee S, Khang D, Kim S-H. High dispersity of carbon nanotubes diminishes immunotoxicity in the spleen. Int J Nanomed. 2015;10:2697–710.

Article  CAS  Google Scholar 

Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160:121–6. https://doi.org/10.1016/j.toxlet.2005.06.020.

Article  PubMed  CAS  Google Scholar 

Larner SF, Wang J, Goodman J, et al. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J Cell Death. 2017;10:1179670717694523. https://doi.org/10.1177/1179670717694523.

Article  PubMed  PubMed Central  Google Scholar 

Aragon MJ, Topper L, Tyler CR, et al. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment. Proc Natl Acad Sci U S A. 2017;114:E1968–76. https://doi.org/10.1073/pnas.1616070114.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, et al. Size effects of single-walled carbon nanotubes on in-vivo and in-vitro pulmonary toxicity. Inhalation Toxicol. 2015;27(4):207–23. https://doi.org/10.3109/08958378.2015.1026620.

Article  CAS  Google Scholar 

Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health. 2017;59(5):394–407. https://doi.org/10.1539/joh.17-0089-RA.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shang S, Yang S, Liu Z, Yang X. Oxidative damage in the kidney and brain of mice induced by different nano-materials. Frontiers in Biology. 2015;10(1):91–6. https://doi.org/10.1007/s11515-015-1345-3.

Article  CAS  Google Scholar 

•• Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H et al. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Reports. 2018;8:8375. https://doi.org/10.1038/s41598-018-26790-x. In this study, Researchers evaluated the toxicology of SWCNTs and MWCNTs and a typical animal model of breast cancer in order to gain insights into the effects of CNTs on MC4L2 cells and mice. As a result, this study has high scientific value since the authors address the toxicity of carbon nanotubes to humans at high doses as CNTs at high doses cause inflammation in the liver and spleen. In addition, they also address the cardiovascular and neurotoxicity of carbon nanotubes. Using SWCNTs as a model for carbon nanoparticles, the paper briefly.

Cao Y, Luo Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to the vascular system: a review. Toxicol Appl Pharmacol. 2019;385: 114801. https://doi.org/10.1016/j.taap.2019.114801.

Article  PubMed  CAS  Google Scholar 

Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Can Res. 2008;68(16):6652–60. https://doi.org/10.1158/0008-5472.CAN-08-1468.

Article  CAS  Google Scholar 

Madkour LH, et al. Toxicological considerations of clinically applicable nanoparticles. Nucleic Acids Gene Anticancer Drug Deliv Ther. 2019:425–483. https://doi.org/10.1016/b978-0-12-819777-6.00019-6.

Bakhtiary Z, Saei A, Hajipour M, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed Nanotechnol Biol Med. 2016;12(2):287–307. https://doi.org/10.1016/j.nano.2015.10.019.

Article  CAS  Google Scholar 

Veranth J, Kaser E, Veranth M, Koch M, Yost G. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. 2007;4(1):2. https://doi.org/10.1186/1743-8977-4-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Häfeli U, Riffle J, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey J, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6(5):1417–28. https://doi.org/10.1021/mp900083m.

Article  PubMed  CAS  Google Scholar 

Jeng H, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A. 2006;41(12):2699–711. https://doi.org/10.1080/10934520600966177.

Article  CAS  Google Scholar 

Bobo D, Robinson K, Islam J, Thurecht K, Corrie S. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. https://doi.org/10.1007/s11095-016-1958-5.

Article  PubMed  CAS  Google Scholar 

Thakor A, Jokerst J, Ghanouni P, Campbell J, Mittra E, Gambhir S. Clinically approved nanoparticle imaging agents. J Nucl Med. 2016;57(12):1833–7. https://doi.org/10.2967/jnumed.116.181362.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Y. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400. https://doi.org/10.3748/wjg.v21.i47.13400.

Article  PubMed 

Comments (0)

No login
gif