Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. https://doi.org/10.1038/nature07039
Article CAS PubMed Google Scholar
George A, Martin P (2022) Wound healing insights from flies and fish. Cold Spring Harb Perspect Biol 14(11). https://doi.org/10.1101/cshperspect.a041217
Wilkinson HN, Hardman MJ (2020) Wound healing: cellular mechanisms and pathological outcomes. Open Biol 10(9):200223. https://doi.org/10.1098/rsob.200223
Article CAS PubMed PubMed Central Google Scholar
Krampert M, Kuenzle S, Thai SN, Lee N, Iruela-Arispe ML, Werner S (2005) ADAMTS1 proteinase is up-regulated in wounded skin and regulates migration of fibroblasts and endothelial cells. J Biol Chem 280(25):23844–23852. https://doi.org/10.1074/jbc.M412212200
Article CAS PubMed Google Scholar
Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT (2022) Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29(8):1161–1180. https://doi.org/10.1016/j.stem.2022.07.006
Article CAS PubMed PubMed Central Google Scholar
Park S, Gonzalez DG, Guirao B, Boucher JD, Cockburn K, Marsh ED, Mesa KR, Brown S, Rompolas P, Haberman AM, Bellaiche Y, Greco V (2017) Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat Cell Biol 19(2):155–163. https://doi.org/10.1038/ncb3472
Article CAS PubMed PubMed Central Google Scholar
Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ (2023) Breakthrough treatments for accelerated wound healing. Sci Adv 9(20):eade7007. https://doi.org/10.1126/sciadv.ade7007
Article CAS PubMed PubMed Central Google Scholar
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: A cellular perspective. Physiol Rev 99(1):665–706. https://doi.org/10.1152/physrev.00067.2017
Article CAS PubMed Google Scholar
Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974 doi:nature04483 [pii]
1038/nature04483
Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703 doi:S0092-8674(07)00905-1 [pii]
CAS PubMed PubMed Central Google Scholar
1016/j cell.2007.06.054
Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. https://doi.org/10.1038/nature04478
Article CAS PubMed Google Scholar
Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10(5):527–537. https://doi.org/10.1038/ncb1715
Article CAS PubMed Google Scholar
Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455
Article CAS PubMed Google Scholar
Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039
Article CAS PubMed Google Scholar
Andrade J, Shi C, Costa ASH, Choi J, Kim J, Doddaballapur A, Sugino T, Ong YT, Castro M, Zimmermann B, Kaulich M, Guenther S, Wilhelm K, Kubota Y, Braun T, Koh GY, Grosso AR, Frezza C, Potente M (2021) Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol 23(4):413–423. https://doi.org/10.1038/s41556-021-00637-6
Article CAS PubMed PubMed Central Google Scholar
Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29(8):2011–2022. https://doi.org/10.1128/MCB.01472-08
Article CAS PubMed PubMed Central Google Scholar
Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M, Allen B, Fang S, D’Amico G, Sipila TJ, Lohela M, Strandin T, Vaheri A, Yla-Herttuala S, Koh GY, McDonald DM, Alitalo K, Saharinen P (2016) Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 126(9):3495–3510. https://doi.org/10.1172/JCI84923
Article PubMed PubMed Central Google Scholar
Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. https://doi.org/10.1038/nrm2639
Article CAS PubMed Google Scholar
Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2(9):a006550. https://doi.org/10.1101/cshperspect.a006650
Article CAS PubMed Google Scholar
Zhang Y, Kontos CD, Annex BH, Popel AS (2019) Angiopoietin-Tie signaling pathway in endothelial cells: A computational model. iScience 20:497–511. https://doi.org/10.1016/j.isci.2019.10.006
Article CAS PubMed PubMed Central Google Scholar
Saharinen P, Eklund L, Alitalo K (2017) Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 16(9):635–661. https://doi.org/10.1038/nrd.2016.278
Article CAS PubMed Google Scholar
Staton CA, Valluru M, Hoh L, Reed MW, Brown NJ (2010) Angiopoietin-1, angiopoietin-2 and Tie-2 receptor expression in human dermal wound repair and scarring. Br J Dermatol 163(5):920–927. https://doi.org/10.1111/j.1365-2133.2010.09940.x
Article CAS PubMed Google Scholar
Kampfer H, Pfeilschifter J, Frank S (2001) Expressional regulation of angiopoietin-1 and– 2 and the tie-1 and– 2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest 81(3):361–373. https://doi.org/10.1038/labinvest.3780244
Article CAS PubMed Google Scholar
Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99(8):2703–2711
Daly C, Qian X, Castanaro C, Pasnikowski E, Jiang X, Thomson BR, Quaggin SE, Papadopoulos N, Wei Y, Rudge JS, Thurston G, Yancopoulos GD, Davis S (2018) Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Sci Rep 8(1):505. https://doi.org/10.1038/s41598-017-18912-8
Article CAS PubMed PubMed Central Google Scholar
Saha S, Yang X, Huang SN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y (2022) Resolution of R-loops by topoisomerase III-beta (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 40(2):111067. https://doi.org/10.1016/j.celrep.2022.111067
Article CAS PubMed PubMed Central Google Scholar
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with alphafold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2
Comments (0)