Angiopoietin-2 binds to FGFR2, inhibits FGF-FGFR2 signaling, and delays cutaneous wound healing by inhibiting wound angiogenesis

Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321. https://doi.org/10.1038/nature07039

Article  CAS  PubMed  Google Scholar 

George A, Martin P (2022) Wound healing insights from flies and fish. Cold Spring Harb Perspect Biol 14(11). https://doi.org/10.1101/cshperspect.a041217

Wilkinson HN, Hardman MJ (2020) Wound healing: cellular mechanisms and pathological outcomes. Open Biol 10(9):200223. https://doi.org/10.1098/rsob.200223

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krampert M, Kuenzle S, Thai SN, Lee N, Iruela-Arispe ML, Werner S (2005) ADAMTS1 proteinase is up-regulated in wounded skin and regulates migration of fibroblasts and endothelial cells. J Biol Chem 280(25):23844–23852. https://doi.org/10.1074/jbc.M412212200

Article  CAS  PubMed  Google Scholar 

Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT (2022) Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29(8):1161–1180. https://doi.org/10.1016/j.stem.2022.07.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S, Gonzalez DG, Guirao B, Boucher JD, Cockburn K, Marsh ED, Mesa KR, Brown S, Rompolas P, Haberman AM, Bellaiche Y, Greco V (2017) Tissue-scale coordination of cellular behaviour promotes epidermal wound repair in live mice. Nat Cell Biol 19(2):155–163. https://doi.org/10.1038/ncb3472

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ (2023) Breakthrough treatments for accelerated wound healing. Sci Adv 9(20):eade7007. https://doi.org/10.1126/sciadv.ade7007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: A cellular perspective. Physiol Rev 99(1):665–706. https://doi.org/10.1152/physrev.00067.2017

Article  CAS  PubMed  Google Scholar 

Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974 doi:nature04483 [pii]

CAS  PubMed  Google Scholar 

1038/nature04483

Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703 doi:S0092-8674(07)00905-1 [pii]

CAS  PubMed  PubMed Central  Google Scholar 

1016/j cell.2007.06.054

Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. https://doi.org/10.1038/nature04478

Article  CAS  PubMed  Google Scholar 

Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10(5):527–537. https://doi.org/10.1038/ncb1715

Article  CAS  PubMed  Google Scholar 

Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455

Article  CAS  PubMed  Google Scholar 

Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

Article  CAS  PubMed  Google Scholar 

Andrade J, Shi C, Costa ASH, Choi J, Kim J, Doddaballapur A, Sugino T, Ong YT, Castro M, Zimmermann B, Kaulich M, Guenther S, Wilhelm K, Kubota Y, Braun T, Koh GY, Grosso AR, Frezza C, Potente M (2021) Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol 23(4):413–423. https://doi.org/10.1038/s41556-021-00637-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29(8):2011–2022. https://doi.org/10.1128/MCB.01472-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M, Allen B, Fang S, D’Amico G, Sipila TJ, Lohela M, Strandin T, Vaheri A, Yla-Herttuala S, Koh GY, McDonald DM, Alitalo K, Saharinen P (2016) Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 126(9):3495–3510. https://doi.org/10.1172/JCI84923

Article  PubMed  PubMed Central  Google Scholar 

Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. https://doi.org/10.1038/nrm2639

Article  CAS  PubMed  Google Scholar 

Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2(9):a006550. https://doi.org/10.1101/cshperspect.a006650

Article  CAS  PubMed  Google Scholar 

Zhang Y, Kontos CD, Annex BH, Popel AS (2019) Angiopoietin-Tie signaling pathway in endothelial cells: A computational model. iScience 20:497–511. https://doi.org/10.1016/j.isci.2019.10.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saharinen P, Eklund L, Alitalo K (2017) Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 16(9):635–661. https://doi.org/10.1038/nrd.2016.278

Article  CAS  PubMed  Google Scholar 

Staton CA, Valluru M, Hoh L, Reed MW, Brown NJ (2010) Angiopoietin-1, angiopoietin-2 and Tie-2 receptor expression in human dermal wound repair and scarring. Br J Dermatol 163(5):920–927. https://doi.org/10.1111/j.1365-2133.2010.09940.x

Article  CAS  PubMed  Google Scholar 

Kampfer H, Pfeilschifter J, Frank S (2001) Expressional regulation of angiopoietin-1 and– 2 and the tie-1 and– 2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab Invest 81(3):361–373. https://doi.org/10.1038/labinvest.3780244

Article  CAS  PubMed  Google Scholar 

Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99(8):2703–2711

CAS  PubMed  Google Scholar 

Daly C, Qian X, Castanaro C, Pasnikowski E, Jiang X, Thomson BR, Quaggin SE, Papadopoulos N, Wei Y, Rudge JS, Thurston G, Yancopoulos GD, Davis S (2018) Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Sci Rep 8(1):505. https://doi.org/10.1038/s41598-017-18912-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saha S, Yang X, Huang SN, Agama K, Baechler SA, Sun Y, Zhang H, Saha LK, Su S, Jenkins LM, Wang W, Pommier Y (2022) Resolution of R-loops by topoisomerase III-beta (TOP3B) in coordination with the DEAD-box helicase DDX5. Cell Rep 40(2):111067. https://doi.org/10.1016/j.celrep.2022.111067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with alphafold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif