Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3(8):a005090. https://doi.org/10.1101/cshperspect.a005090
Article CAS PubMed PubMed Central Google Scholar
Majesky MW (2018) Vascular development. Arterioscler Thromb Vasc Biol 38(3):e17–e24. https://doi.org/10.1161/ATVBAHA.118.310223
Article CAS PubMed PubMed Central Google Scholar
le Noble F, Kupatt C (2022) Interdependence of angiogenesis and arteriogenesis in development and disease. Int J Mol Sci. https://doi.org/10.3390/ijms23073879
Article PubMed PubMed Central Google Scholar
Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257
Hoang MV, Whelan MC, Senger DR (2004) Rho activity critically and selectively regulates endothelial cell organization during angiogenesis. Proc Natl Acad Sci USA 101(7):1874–1879
CAS PubMed PubMed Central Google Scholar
Boareto M, Jolly MK, Ben-Jacob E, Onuchic JN (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc Natl Acad Sci USA 112(29):E3836–E3844. https://doi.org/10.1073/pnas.1511814112
Article CAS PubMed PubMed Central Google Scholar
Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. https://doi.org/10.1016/j.cell.2009.03.025
Article CAS PubMed Google Scholar
Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K (2022) Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med. https://doi.org/10.1084/jem.20210565
Article PubMed PubMed Central Google Scholar
Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395
Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367
Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732
Tasev D, Koolwijk P, van Hinsbergh VWM (2016) Therapeutic potential of human-derived endothelial colony-forming cells in animal models. Tissue Eng Part B Rev 22(5):371–382
Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105(1):71–77
CAS PubMed PubMed Central Google Scholar
Banno K, Yoder MC (2018) Tissue regeneration using endothelial colony-forming cells: promising cells for vascular repair. Pediatr Res 83(1–2):283–290. https://doi.org/10.1038/pr.2017.231
Article CAS PubMed Google Scholar
Schweighofer B, Testori J, Sturtzel C, Sattler S, Mayer H, Wagner O, Bilban M, Hofer E (2009) The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 102(3):544–554. https://doi.org/10.1160/TH08-12-0830
Article CAS PubMed PubMed Central Google Scholar
Kaikkonen MU, Niskanen H, Romanoski CE, Kansanen E, Kivelä AM, Laitalainen J, Heinz S, Benner C, Glass CK, Ylä-Herttuala S (2014) Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization. Nucleic Acids Res 42(20):12570–12584. https://doi.org/10.1093/nar/gku1036
Article CAS PubMed PubMed Central Google Scholar
Laakkonen JP, Lappalainen JP, Theelen TL, Toivanen PI, Nieminen T, Jauhiainen S, Kaikkonen MU, Sluimer JC, Ylä-Herttuala S (2017) Differential regulation of angiogenic cellular processes and claudin-5 by Histamine and VEGF via PI3K-signaling, transcription factor SNAI2 and interleukin-8. Angiogenesis 20(1):109–124. https://doi.org/10.1007/s10456-016-9532-7
Article CAS PubMed Google Scholar
Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638
Voigt P, Tee W-W, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27(12):1318–1338. https://doi.org/10.1101/gad.219626.113
Article CAS PubMed PubMed Central Google Scholar
Avgustinova A, Benitah SA (2016) Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 17(10):643–658. https://doi.org/10.1038/nrm.2016.76
Article CAS PubMed Google Scholar
Fraineau S, Palii CG, McNeill B, Ritso M, Shelley WC, Prasain N, Chu A, Vion E, Rieck K, Nilufar S, Perkins TJ, Rudnicki MA, Allan DS, Yoder MC, Suuronen EJ, Brand M (2017) Epigenetic activation of Pro-angiogenic signaling pathways in human endothelial progenitors increases vasculogenesis. Stem Cell Rep 9(5):1573–1587. https://doi.org/10.1016/j.stemcr.2017.09.009
Palii CG, Vulesevic B, Fraineau S, Pranckeviciene E, Griffith AJ, Chu A, Faralli H, Li Y, McNeill B, Sun J, Perkins TJ, Dilworth FJ, Perez-Iratxeta C, Suuronen EJ, Allan DS, Brand M (2014) Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes. Cell Stem Cell 14(5):644–657. https://doi.org/10.1016/j.stem.2014.03.003
Article CAS PubMed Google Scholar
Saitou M, Kagiwada S, Kurimoto K (2012) Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139(1):15–31. https://doi.org/10.1242/dev.050849
Article CAS PubMed Google Scholar
Kim J, Zhao H, Dan J, Kim S, Hardikar S, Hollowell D, Lin K, Lu Y, Takata Y, Shen J, Chen T (2016) Maternal Setdb1 is required for meiotic progression and preimplantation development in mouse. PLoS Genet 12(4):e1005970. https://doi.org/10.1371/journal.pgen.1005970
Article CAS PubMed PubMed Central Google Scholar
Yin S, Jiang X, Jiang H, Gao Q, Wang F, Fan S, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita TK, Fan H-Y, Zhang Y, Shi Q (2017) Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development 144(12):2165–2174. https://doi.org/10.1242/dev.149518
Article CAS PubMed PubMed Central Google Scholar
Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady A-Q, Siffert J-C, Mathieu E, Muller CD, Bronner C (2005) The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene 24(49):7337–7345
Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A, Tatsumi K (2002) Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem 277(37):34549–34555
Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L, Bonapace IM (2007) Np95 is implicated in pericentromeric heterochromatin replication and in major satellite Silencing. Mol Biol Cell 18(3):1098–1106
CAS PubMed PubMed Central Google Scholar
Tian Y, Paramasivam M, Ghosal G, Chen D, Shen X, Huang Y, Akhter S, Legerski R, Chen J, Seidman MM, Qin J, Li L (2015) UHRF1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep 10(12):1957–1966. https://doi.org/10.1016/j.celrep.2015.03.038
Comments (0)