Wettschureck N, Strilic B, Offermanns S (2019) Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev 99(3):1467–1525. https://doi.org/10.1152/physrev.00037.2018
Article PubMed CAS Google Scholar
Claesson-Welsh L, Dejana E, McDonald DM (2021) Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med 27(4):314–331. https://doi.org/10.1016/j.molmed.2020.11.006
Article PubMed CAS Google Scholar
Yu H, Wang C, Wang X, Wang H, Zhang C, You J, Wang P, Feng C, Xu G, Zhao R, Wu X, Zhang G (2017) Long-term exposure to ethanol downregulates tight junction proteins through the protein kinase Calpha signaling pathway in human cerebral microvascular endothelial cells. Exp Ther Med 14(5):4789–4796. https://doi.org/10.3892/etm.2017.5180
Article PubMed PubMed Central CAS Google Scholar
Song HB, Jun HO, Kim JH, Yu YS, Kim KW, Kim JH (2014) Suppression of protein kinase C-zeta attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Biochem Biophys Res Commun 444(1):63–68. https://doi.org/10.1016/j.bbrc.2014.01.002
Article PubMed CAS Google Scholar
Aveleira CA, Lin CM, Abcouwer SF, Ambrosio AF, Antonetti DA (2010) TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 59(11):2872–2882. https://doi.org/10.2337/db09-1606
Article PubMed PubMed Central CAS Google Scholar
Fu Z, Chen Y, Qin F, Yang S, Deng X, Ding R, Feng L, Li W, Zhu J (2014) Increased activity of Rho kinase contributes to hemoglobin-induced early disruption of the blood-brain barrier in vivo after the occurrence of intracerebral hemorrhage. Int J Clin Exp Pathol 7(11):7844–7853
PubMed PubMed Central Google Scholar
Liu Y, Mu S, Li X, Liang Y, Wang L, Ma X (2019) Unfractionated heparin alleviates sepsis-induced acute lung injury by protecting tight junctions. J Surg Res 238:175–185. https://doi.org/10.1016/j.jss.2019.01.020
Article PubMed CAS Google Scholar
Adam AP, Lowery AM, Martino N, Alsaffar H, Vincent PA (2016) Src family kinases modulate the loss of endothelial barrier function in response to TNF-alpha: crosstalk with p38 signaling. PLoS ONE 11(9):e0161975. https://doi.org/10.1371/journal.pone.0161975
Article PubMed PubMed Central CAS Google Scholar
Qin LH, Huang W, Mo XA, Chen YL, Wu XH (2015) LPS induces occludin dysregulation in cerebral microvascular endothelial cells via MAPK signaling and augmenting MMP-2 levels. Oxid Med Cell Longev 2015:120641. https://doi.org/10.1155/2015/120641
Article PubMed PubMed Central Google Scholar
Tai LM, Holloway KA, Male DK, Loughlin AJ, Romero IA (2010) Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med 14(5):1101–1112. https://doi.org/10.1111/j.1582-4934.2009.00717.x
Article PubMed CAS Google Scholar
Yamaguchi K, Sudo H, Imai K (2019) Vascular endothelial growth factor signaling in VE-cadherin expression and tube-like formation by rheumatoid arthritic synovial fibroblast-like cells. Biochem Biophys Res Commun 508(2):405–409. https://doi.org/10.1016/j.bbrc.2018.11.116
Article PubMed CAS Google Scholar
Bieri M, Oroszlan M, Zuppinger C, Mohacsi PJ (2009) Biosynthesis and expression of VE-cadherin is regulated by the PI3K/mTOR signaling pathway. Mol Immunol 46(5):866–872. https://doi.org/10.1016/j.molimm.2008.09.011
Article PubMed CAS Google Scholar
Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK, Shi DS, Guo J, Smith MC, Grossmann AH (2012) Interleukin receptor activates a MYD88–ARNO–ARF6 cascade to disrupt vascular stability. Nature 492(7428):252–255
PubMed PubMed Central CAS Google Scholar
Davis CT, Zhu W, Gibson CC, Bowman-Kirigin JA, Sorensen L, Ling J, Sun H, Navankasattusas S, Li DY (2014) ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock. J Immunol 192(12):6045–6052. https://doi.org/10.4049/jimmunol.1400309
Article PubMed CAS Google Scholar
de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38(18):1380–1388. https://doi.org/10.1093/eurheartj/ehw567
Article PubMed CAS Google Scholar
de Bruin RG, van der Veer EP, Prins J, Lee DH, Dane MJ, Zhang H, Roeten MK, Bijkerk R, de Boer HC, Rabelink TJ, van Zonneveld AJ, van Gils JM (2016) The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and beta-catenin protein expression. Sci Rep 6:21643. https://doi.org/10.1038/srep21643
Article PubMed PubMed Central CAS Google Scholar
Alam U (1866) Rasputin a decade on and more promiscuous than ever? A review of G3BPs. Biochim Biophys Acta Mol Cell Res 3:360–370. https://doi.org/10.1016/j.bbamcr.2018.09.001
Gallouzi IE, Parker F, Chebli K, Maurier F, Labourier E, Barlat I, Capony JP, Tocque B, Tazi J (1998) A novel phosphorylation-dependent RNase activity of GAP-SH3 binding protein: a potential link between signal transduction and RNA stability. Mol Cell Biol 18(7):3956–3965. https://doi.org/10.1128/MCB.18.7.3956
Article PubMed PubMed Central CAS Google Scholar
Kim SS, Sze L, Liu C, Lam KP (2019) The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-beta response. J Biol Chem 294(16):6430–6438. https://doi.org/10.1074/jbc.RA118.005868
Article PubMed PubMed Central CAS Google Scholar
Zekri L, Chebli K, Tourriere H, Nielsen FC, Hansen TV, Rami A, Tazi J (2005) Control of fetal growth and neonatal survival by the RasGAP-associated endoribonuclease G3BP. Mol Cell Biol 25(19):8703–8716. https://doi.org/10.1128/MCB.25.19.8703-8716.2005
Article PubMed PubMed Central CAS Google Scholar
Bikkavilli RK, Malbon CC (2011) Arginine methylation of G3BP1 in response to Wnt3a regulates beta-catenin mRNA. J Cell Sci 124:2310–2320. https://doi.org/10.1242/jcs.084046
Article PubMed PubMed Central CAS Google Scholar
Winslow S, Leandersson K, Larsson C (2013) Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells. Mol Cancer 12(1):156. https://doi.org/10.1186/1476-4598-12-156
Article PubMed PubMed Central CAS Google Scholar
Taniuchi K, Nishimori I, Hollingsworth MA (2011) The N-terminal domain of G3BP enhances cell motility and invasion by posttranscriptional regulation of BART. Mol Cancer Res 9(7):856–866. https://doi.org/10.1158/1541-7786.MCR-10-0574
Article PubMed CAS Google Scholar
Taniuchi K, Nishimori I, Hollingsworth MA (2011) Intracellular CD24 inhibits cell invasion by posttranscriptional regulation of BART through interaction with G3BP. Cancer Res 71(3):895–905. https://doi.org/10.1158/0008-5472.CAN-10-2743
Article PubMed CAS Google Scholar
Sahoo PK, Lee SJ, Jaiswal PB, Alber S, Kar AN, Miller-Randolph S, Taylor EE, Smith T, Singh B, Ho TS, Urisman A, Chand S, Pena EA, Burlingame AL, Woolf CJ, Fainzilber M, English AW, Twiss JL (2018) Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat Commun 9(1):3358. https://doi.org/10.1038/s41467-018-05647-x
Article PubMed PubMed Central CAS Google Scholar
Ortega AD, Willers IM, Sala S, Cuezva JM (2010) Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J Cell Sci 123(Pt 16):2685–2696. https://doi.org/10.1242/jcs.065920
Comments (0)