Akyeampong J, Udoka S, Caruso G, Bordegoni M (2014) Evaluation of hydraulic excavator human-machine interface concepts using NASA TLX. Int J Ind Ergon 44(3):374–382. https://doi.org/10.1016/j.ergon.2013.12.002
Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31(1):125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555
Article CAS PubMed Google Scholar
Cullen KE, Roy JE (2004) Signal processing in the vestibular system during active versus passive head movements. J Neurophysiol 91(5):1919–1933. https://doi.org/10.1152/jn.00988.2003
Demer JL, Oas JG, Baloh RW (1993) Visual-vestibular interaction in humans during active and passive, vertical head movement. J Vestib Res 3(0957–4271):101–114
Furman JM, Durrant JD (1998) Head-only rotational testing in the elderly. J Vestib Res-Equilib Orientat 8(5):355–361
Haga S, Mizukami N (1996) Japanese version of NASA task load index: sensitivity of its workload score to difficulty of three different laboratory tasks. Jpn J Ergon 32(2):71–79
Haggard P, Chambon V (2012) Sense of agency. Curr Biol 22(10):R390–R392. https://doi.org/10.1016/j.cub.2012.02.040
Article CAS PubMed Google Scholar
Hanson JM, Goebel JA (1998) Comparison of manual whole-body and passive and active head-on-body rotational testing with conventional rotary chair testing. J Vestib Res 8(3):273–282
Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52(C):139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
Heinen SJ, Liu M (1997) Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion. Vis Neurosci 14(5):853–865. https://doi.org/10.1017/S0952523800011597
Article CAS PubMed Google Scholar
Imamizu H, Higuchi S, Toda A, Kawato M (2007) Reorganization of brain activity for multiple internal models after short but intensive training. Cortex 43(3):338–349. https://doi.org/10.1016/S0010-9452(08)70459-3
Jell RM, Stockwell CW, Turnipseed GT, Guedry FE (1988) The influence of active versus passive head oscillation, and mental set on the human vestibulo-ocular reflex. Aviat Space Environ Med 59(11):1061–1065
Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727. https://doi.org/10.1016/S0959-4388(99)00028-8
Article CAS PubMed Google Scholar
Kono T, Sato Y, Wada T, Tsunemichi D, Fujiyama N, Ono Y (2023) Suppression of vestibulo-ocular reflex with increased mental workload while driving. IEEE Access 11:119244–119253. https://doi.org/10.1109/ACCESS.2023.3326809
Kono T, Sato Y, Wada, T (2019) Model analysis of influence of mental workload on vestibulo-ocular reflex. In: 14th IFAC symposium on analysis design and evaluation of human machine systems, pp. 329–334
Kouchi M, Mochimaru M (2005) AIST Anthropometric database 1991–1992, National Institute of Advanced Industrial Science and Technology, H16PRO 287
Le AS, Suzuki T, Aoki H (2020) Evaluating driver cognitive distraction by eye tracking: from simulator to driving. Transp Res Interdiscip Perspect. https://doi.org/10.1016/j.trip.2019.100087
Medendorp WP, Van Gisbergen JA, Van Pelt S, Gielen CC (2000) Context compensation in the vestibuloocular reflex during active head rotations. J Neurophysiol 84(6):2904–2917
Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 87(2):819–833. https://doi.org/10.1152/jn.00485.2001
Article CAS PubMed Google Scholar
Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728):615–618. https://doi.org/10.1038/19303
Article CAS PubMed Google Scholar
Nakayama O, Futami T, Nakamura T, Boer ER (1999) Development of a steering entropy method for evaluating driver workload. SAE Tech Pap 724:5–8. https://doi.org/10.4271/1999-01-0892
Obinata G, Tokuda S, Shibata N (2008) Mental workloads can be objectively quantified in real-time using VOR (vestibulo-ocular reflex). In: Proceedings of the 17th world congress of IFAC, pp. 15094–15099. https://doi.org/10.3182/20080706-5-KR-1001.1635
Okawa Y, Ito M, Sekizuka R, Saiki S, Yamazaki Y, Kurita Y (2020) An assistive interface of a teleoperation system of an excavator by overlapping the predicted position of the arm. 2020. https://doi.org/10.22260/ISARC2020/0012
Paige GD (1994) Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of eye movements with aging. Exp Brain Res 98(2):355–372. https://doi.org/10.1007/BF00228423
Article CAS PubMed Google Scholar
Paige GD, Telford L, Seidman SH, Barnes GR (1998) Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J Neurophysiol 80(5):2391–2404
Sato Y, Wada T, Takebayashi Y, Kashiwagi Y (2020) Evaluation of sense of agency for rotating seat operation by vestibulo-ocular reflex. The 43rd annual meeting of the Japan Neuroscience Society.
Sato Y, Wada T, Kashiwagi Y, Takebayashi Y (2021) Evaluation of operational feeling of rotating seat by the vestibulo ocular reflex. SfN Global Connectome: A Virtual Event
Schubert MC, Migliaccio AA (2016) Stability of the aVOR to repeat head impulse testing. Otol Neurotol 37(6):781–786. https://doi.org/10.1097/MAO.0000000000001055
Uefune T, Wada T, Sonoda K (2016) Computation of the vestibulo-ocular reflex for eye closure based on the 6DOF-SVC model. In: Proceedings of IEEE international conference on system, man, and cybernetics, pp. 1285–1290. https://doi.org/10.1109/SMC.2016.7844418
Uefune T, Wada T, Asao T (2018) Modulation of vestibulo-ocular reflex by volition of machine operation. In: IEEE international conference on system, man, and cybernetics. https://doi.org/10.1109/SMC.2018.00111
Wolpert D, Ghahramani Z, Jordan M (1995) An internal model for sensorimotor integration. Science 269(5232):1880–1882. https://doi.org/10.1126/science.7569931
Comments (0)